The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform
文献类型: 外文期刊
作者: Fan, Jiangchuan 1 ; Zhang, Ying 1 ; Wen, Weiliang 1 ; Gu, Shenghao 1 ; Lu, Xianju 1 ; Guo, Xinyu 1 ;
作者机构: 1.China Natl Engn Res Ctr Informat Technol Agr NERC, Beijing Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
关键词: Internet of things in agriculture; Big data; High-throughput phenotype; Data mining
期刊名称:JOURNAL OF CLEANER PRODUCTION ( 影响因子:9.297; 五年影响因子:9.444 )
ISSN: 0959-6526
年卷期: 2021 年 280 卷
页码:
收录情况: SCI
摘要: With continuous collaborative research in sensor technology, communication technology, plant science, computer science and engineering science, Internet of Things (IoT) in agriculture has made a qualitative leap through environmental sensor networks, non-destructive imaging, spectral analysis, robotics, machine vision and laser radar technology. Physical and chemical analysis can continuously obtain environmental data, experimental metadata (including text, image and spectral, 3D point cloud and real-time growth data) through integrated automation platform equipment and technical means. Based on data on multi-scale, multi-environmental and multi-mode plant traits that constitute big data on plant phenotypes, genotype-phenotype-envirotype relationship in the omics system can be explored deeply. Detailed information on the formation mechanism of specific biological traits can promote the process of functional genomics, plant molecular breeding and efficient cultivation. This study summarises the development background, research process and characteristics of high-throughput plant phenotypes. A systematic review of the research progress of IoT in agriculture and plant high-throughput phenotypes is conducted, including the acquisition and analysis of plant phenotype big data, phenotypic trait prediction and multi-recombination analysis based on plant phenomics. This study proposes key techniques for current plant phenotypes, and looks forward to the research on plant phenotype detection technology in the field environment, fusion and data mining of plant phenotype multivariate data, simultaneous observation of multi-scale phenotype platform and promotion of a comprehensive high-throughput phenotype technology. (C) 2020 Elsevier Ltd. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
In-capillary aptamer-functionalized dispersive solid-phase microextraction for dynamic transfer enrichment and miniature mass spectrometry analysis: A magnetically driven capture-and-release strategy
作者:Li, Linsen;Zhang, Ying;Lv, Yueguang;Ma, Qiang;Li, Linsen;Qu, Feng;Zhao, Liping
关键词:Aptamer; Dispersive magnetic solid-phase micro; extraction; Extraction nanoelectrospray ionization; Dicationic ionic liquid; Charge inversion; Miniature mass spectrometer
-
Transcriptome Analysis and Metabolic Profiling Reveal the Key Regulatory Pathways in Drought Stress Responses and Recovery in Tomatoes
作者:Shu, Jinshuai;Wang, Xiaoxuan;Liu, Fuzhong;Zhang, Ying;Chen, Yuhui;Zhang, Lili;Liu, Guiming
关键词:transcriptomics; metabolomics; drought stress; rehydration; genes; pathway
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification
-
The alleviative effect of C-phycocyanin peptides against TNBS-induced
作者:Wen, Weiliang;Wu, Sheng;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Lu, Xianju;Wu, Sheng;Lu, Xianju;Liu, Xiang;Gu, Shenghao;Guo, Xinyu;Wu, Sheng;Liu, Xiang;Gu, Shenghao;Guo, Xinyu
关键词:Three-dimensional point cloud; Semantic reconstruction; Maize leaf; Plant phenotyping
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view



