20(S)-Ginsenoside Rg3 Inhibits Lung Cancer Cell Proliferation by Targeting EGFR-Mediated Ras/Raf/MEK/ERK Pathway
文献类型: 外文期刊
作者: Liang, Yuan 1 ; Zhang, Tiehua 1 ; Jing, Siyuan 1 ; Zuo, Peng 2 ; Li, Tiezhu 2 ; Wang, Yongjun 2 ; Xing, Shaochen 2 ; Zhan 1 ;
作者机构: 1.Jilin Univ, Coll Food Sci & Engn, Changchun 130062, Peoples R China
2.Jilin Acad Agr Sci, Inst Agr Biotechnol, Changchun 130033, Peoples R China
关键词: Epidermal Growth Factor Receptor; 20(S)-Ginsenoside Rg3; Cell Proliferation; Cell Cycle; Binding Interaction
期刊名称:AMERICAN JOURNAL OF CHINESE MEDICINE ( 影响因子:3.682; 五年影响因子:3.22 )
ISSN: 0192-415X
年卷期: 2021 年 49 卷 03 期
页码:
收录情况: SCI
摘要: Lung cancer is the leading cause of cancer death in the world and classified into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). As tyrosine kinase inhibitors (TKIs), several triterpenoid saponins can target to epidermal growth factor receptor (EGFR), a widely used molecular therapeutic target, to exhibit remarkable anti-proliferative activities in cancer cells. As one of triterpenoid saponins, 20(S)-ginsenoside Rg3 [20(S)-Rg3] was confirmed to be an EGFR-TKI in this work. According to the quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting analysis, 20(S)-Rg3 was certified to play a key role on EGFR/Ras/Raf/MEK/ERK signal pathway regulation. Our data demonstrated that 20(S)-Rg3 might block the cell cycle at the G0/G1 phase by downregulating CDK2, Cyclin A2, and Cyclin E1. Molecular docking suggested that the combination of both hydrophobic and hydrogen-bonding interactions may help stabilizing the 20(S)-Rg3-EGFR binding. Furthermore, their binding stability was assessed by molecular dynamics simulation. Taken together, these data provide the evidence that 20(S)-Rg3 could prohibit A549 cell proliferation, probably by arresting the cell cycle at the G0/G1 phase via the EGFR/Ras/Raf/MEK/ERK pathway.
- 相关文献
作者其他论文 更多>>
-
Intercropping outweighs straw incorporation driving community and functional diversity of microarthropods after 5 years of tillage practices
作者:Liu, Yuhang;Gao, Qiang;Sun, Xin;Wang, Bin;Sun, Xin;Liu, Yuhang;Wang, Yongjun;Yao, Fanyun;Wang, Bin;Sun, Xin;Wu, Haitao;Sun, Xin
关键词:Maize-peanut intercropping; Microarthropods; Straw incorporation; Sustainable agriculture
-
Psoralen and Isopsoralen Activate Nuclear Factor Erythroid 2-Related Factor 2 Through Interaction With Kelch-Like ECH-Associated Protein 1
作者:Lv, Chengyu;Wang, Song;Sun, Chang;Chen, Yihao;Wang, Chao;Yuan, Cuiping;Qin, Fengxian;Li, Tiezhu;Liu, Jing
关键词:antioxidant response element; isopsoralen; molecular docking; Nrf2; psoralen
-
Leveraging cover crop functional traits and nitrogen synchronization for yield-optimized waxy corn production systems
作者:Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun
关键词:waxy corn; cover crop; yield; nitrogen use efficiency; path analysis
-
Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses
作者:Meng, Xiangzeng;Wang, Lichun;Wang, Yongjun;Meng, Xiangzeng;Cao, Yujun;Lv, Yanjie;Wang, Lichun;Wang, Yongjun
关键词:
-
The effects of a combination of maize/peanut intercropping and residue return on soil microbial nutrient limitation in maize fields
作者:Yao, Fanyun;Cao, Yujun;Liang, Jie;Liu, Xiaodan;Liu, Zhiming;Lv, Yanjie;Wei, Wenwen;Xu, Wenhua;Wang, Yongjun;Qi, Wei;Wang, Yongjun;Yu, Yang;Li, Xiang;Feng, Jian
关键词:Soil nutrients; Microbial biomass; Extracellular enzymes; C:N:P stoichiometry; Nutrient limitation
-
Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress
作者:Meng, Xiangzeng;Chen, Denglong;Wang, Yongjun;Wang, Lichun;Meng, Xiangzeng;Chen, Denglong;Lv, Yanjie;Xu, Wenhua;Wang, Yongjun;Wang, Lichun
关键词:Seed germination; Abiotic stress; Antioxidant enzyme; Metabolomic; Glycolysis
-
Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation
作者:Zhang, Shan;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Zhang, Shan;Guo, Zhongxiao;Lv, Yanjie;Wang, Yongjun;Zhang, Xiaolong;Liu, Kaichang
关键词:topsoil depth; maize planting density; intraspecific competition; nitrogen metabolism enzymes; photosynthesis enzymes; yield variability



