Evaluation of Microplastics and Microcystin-LR Effect for Asian Clams (Corbicula fluminea) by a Metabolomics Approach
文献类型: 外文期刊
作者: Zhang, Jiahua 1 ; Wang, Jie 1 ; Wang, Xiaodong 1 ; Liu, Shikun 1 ; Zhou, Liang 1 ; Liu, Xingguo 1 ;
作者机构: 1.Chinese Acad Fishery Sci, Fishery Machinery & Instrument Res Inst, Shanghai 200092, Peoples R China
2.Minist Agr & Rural Affairs, Key Lab Aquaculture Facil Engn, Shanghai, Peoples R China
关键词: Microplastics; Microcystin-LR; Asian clams; Metabolomics; Freshwater aquaculture
期刊名称:MARINE BIOTECHNOLOGY ( 影响因子:3.0; 五年影响因子:3.4 )
ISSN: 1436-2228
年卷期: 2023 年
页码:
收录情况: SCI
摘要: Microplastics (MP) and microcystins (MCs) are two co-occurring pollutants in freshwater ecosystems that pose significant risks to aquatic organisms and human health. This study investigates the interactions between MP and MCs and their effects on the metabolic responses of freshwater aquaculture. Asian clams have been used as an indicator of microplastic pollution in freshwater ecosystems. The present study investigates metabolic responses of Asian clams during microplastic and microcystin-LR stress to identify health impacts and elucidate mechanistic effects of external stressors on Asian clams. A liquid chromatography/mass spectrometry (LC-MS)-based metabolomics approach was used to identify metabolic perturbations and histological section technique was used to assess changes of tissues from different Asian clam treatment groups. The results showed significantly pathological changes in the gills and hepatopancreas in experimental clam compared to control (healthy) clam. Metabolomics revealed alterations of many metabolites in the hepatopancreas of six Asian clam comparison groups, reflecting perturbations in several molecular pathways, including energy metabolism, amino acid metabolism, protein degradation/tissue damage, and oxidative stress. Overall, this study emphasizes the importance of understanding the interactions between MP and MCs and the need for proactive measures to safeguard freshwater ecosystems and human health.
- 相关文献
作者其他论文 更多>>
-
Transcriptomic analysis reveals nanoplastics-induced apoptosis, autophagy and immune response in Litopenaeus vannamei
作者:Li, Yiming;Liu, Xingguo;Li, Xinfeng;Che, Xuan;Zhu, Xiaoyi;Zhao, Yunlong
关键词:Litopenaeus vannamei; Nanoplastics; Immune response; Apoptosis; Gene expression
-
Transcriptome Analysis of Different Aquaculture Substrates on the Immune Response of Babylonia areolata
作者:Zhang, Jiahua;Wang, Jie;Gu, Zhaojun;Liu, Xingguo;Zhang, Jiahua;Wang, Jie;Gu, Zhaojun;Liu, Xingguo
关键词:Babylonia areolate; Substrates; Recirculating aquaculture systems; Immune response; Transcriptome
-
Degradation performance and mechanism of microcystins in aquaculture water using low-temperature plasma technology
作者:Zhang, Jiahua;Liu, Xingguo;Zhang, Jiahua;Liu, Xingguo;Shangguan, Yuyi;Wang, Jie;Zhang, Jiahua;Shangguan, Yuyi;Yang, Guanyi;Liu, Xingguo
关键词:Plasma; Advancedoxidation processes; Microcystin-LR; Cytotoxicity; Algal blooms
-
Moderate effect of calcium peroxide enhanced coagulation on algae containing water: cell characteristics and disinfection by-products formation
作者:Liang, Zihan;Yang, Shu;He, Xin;Yin, Chao;Xu, Bin;Tang, Yulin;Zhu, Yiping;Wang, Xiaodong
关键词:Microcystis aeruginosa; Calcium peroxide; Algal organic matter; Cell characteristics; Disinfection by-products
-
Exposure to polystyrene nanoplastics induces apoptosis, autophagy, histopathological damage, and intestinal microbiota dysbiosis of the Pacific whiteleg shrimp (Litopenaeus vannamei)
作者:Li, Yiming;Liu, Xingguo;Che, Xuan;Yuan, Haojuan;Rihan, Na;Zhao, Yunlong;Zhu, Tian
关键词:Nanoplastics; Litopenaeus vannamei; Immunity; Gut microbiota; Apoptosis
-
Multi-organ transcriptomic profiles and gene-regulation network underlying vibriosis resistance in tongue sole
作者:Chen, Quanchao;Hu, Guobin;Ma, Xinran;Wang, Jie;Shi, Meng;Chen, Songlin;Zhou, Qian;Chen, Songlin;Zhou, Qian
关键词:
-
Polystyrene nanoplastics exposure alters muscle amino acid composition and nutritional quality of Pacific whiteleg shrimp (Litopenaeus vannamei)
作者:Li, Yiming;Liu, Xingguo;Che, Xuan;Ye, Yucong;Rihan, Na;Zhu, Bihong;Zhao, Yunlong;Jiang, Qichen
关键词:Nanoplastic; Litopenaeus vannamei; Histological change; Gene expression