您好,欢迎访问中国水产科学研究院 机构知识库!

SpCrus2 Glycine-Rich Region Contributes Largely to the Antiviral Activity of the Whole-Protein Molecule by Interacting with VP26, a WSSV Structural Protein

文献类型: 外文期刊

作者: Wang, Yue 1 ; Zhang, Chao 4 ; Fang, Wen-Hong 2 ; Ma, Hong-Yu 1 ; Li, Xin-Cang 2 ;

作者机构: 1.Shantou Univ, Guangdong Prov Key Lab Marine Biotechnol, Shantou 515063, Peoples R China

2.Chinese Acad Fishery Sci, East China Sea Fisheries Res Inst, Key Lab East China Sea Fishery Resources Exploita, Minist Agr, Shanghai 200090, Peoples R China

3.Univ Malaysia Terengganu, Inst Trop Aquaculture & Fisheries, Kuala Nerus 21030, Malaysia

4.Chongqing Three Gorges Vocat Coll, Chongqing 404155, Peoples R China

关键词: Scylla paramamosain; crustin; glycine-rich region (GRR); cysteine-rich region (CRR); WSSV; binding and antiviral activities

期刊名称:MARINE DRUGS ( 影响因子:5.118; 五年影响因子:5.951 )

ISSN:

年卷期: 2021 年 19 卷 10 期

页码:

收录情况: SCI

摘要: Crustins are cysteine-rich cationic antimicrobial peptides with diverse biological functions including antimicrobial and proteinase inhibitory activities in crustaceans. Although a few crustins reportedly respond to white spot syndrome virus (WSSV) infection, the detailed antiviral mechanisms of crustins remain largely unknown. Our previous research has shown that SpCrus2, from mud crab Scylla paramamosain, is a type II crustin containing a glycine-rich region (GRR) and a cysteine-rich region (CRR). In the present study, we found that SpCrus2 was upregulated in gills after WSSV challenge. Knockdown of SpCrus2 by injecting double-stranded RNA (dsSpCrus2) resulted in remarkably increased virus copies in mud crabs after infection with WSSV. These results suggested that SpCrus2 played a critical role in the antiviral immunity of mud crab. A GST pull-down assay showed that recombinant SpCrus2 interacted specifically with WSSV structural protein VP26, and this result was further confirmed by a co-immunoprecipitation assay with Drosophila S2 cells. As the signature sequence of type II crustin, SpCrus2 GRR is a glycine-rich cationic polypeptide with amphipathic properties. Our study demonstrated that the GRR and CRR of SpCrus2 exhibited binding activities to VP26, with the former displaying more potent binding ability than the latter. Interestingly, pre-incubating WSSV particles with recombinant SpCrus2 (rSpCrus2), rGRR, or rCRR inhibited virus proliferation in vivo; moreover, rSpCrus2 and rGRR possessed similar antiviral abilities, which were much stronger than those of rCRR. These findings indicated that SpCrus2 GRR contributed largely to the antiviral ability of SpCrus2, and that the stronger antiviral ability of GRR might result from its stronger binding activity to the viral structural protein. Overall, this study provided new insights into the antiviral mechanism of SpCrus2 and the development of new antiviral drugs.

  • 相关文献
作者其他论文 更多>>