您好,欢迎访问中国水产科学研究院 机构知识库!

Acute thermal stress increased enzyme activity and muscle energy distribution of yellowfin tuna

文献类型: 外文期刊

作者: Liu, Hongyan 1 ; Yang, Rui 1 ; Fu, Zhengyi 1 ; Yu, Gang 1 ; Li, Minghao 1 ; Dai, Shiming 1 ; Ma, Zhenhua 1 ; Zong, Humin 4 ;

作者机构: 1.Chinese Acad Fishery Sci, South China Sea Fisheries Res Inst, Trop Aquaculture Res & Dev Ctr, Sanya, Peoples R China

2.Sanya Trop Fisheries Res Inst, Key Lab Efficient Utilizat & Proc Marine Fishery, Sanya, Peoples R China

3.Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA, Australia

4.Natl Marine Environm Ctr, Dalian, Peoples R China

期刊名称:PLOS ONE ( 影响因子:3.7; 五年影响因子:3.8 )

ISSN: 1932-6203

年卷期: 2023 年 18 卷 10 期

页码:

收录情况: SCI

摘要: Heat is a powerful stressor for fish living in natural and artificial environments. Understanding the effects of heat stress on the physiological processes of fish is essential for better aquaculture and fisheries management. In this experiment, a heating rod was used to increase the temperature at 2 degrees C/h to study the changes of energy allocation (CEA) and energy metabolity-related enzyme activities, including pepsin, trypsin, amylase, lipase, acid phosphatase, lactate dehydrogenase, alanine aminotransferase, glutamic oxalic aminotransferase and energy reserve (Ea), energy expenditure (ETS), in juvenile yellowfin tuna cells under acute temperature stress. The results showed that the Ea of juvenile yellowfin tuna muscles in response to high temperature (34 degrees C) was significantly lower than that of the control (28 degrees C), and it also increased ETS. At 6 h, CEA decreased slightly in the high-temperature group, but, the difference in CEA between 24 h and 0 h decreased. After heat stress for 6 h, the activities of acid phosphatase (ACP), lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) increased, indicating that the metabolic rate was accelerated. After heat stress for 24 h, the activity of ALT decreased, indicating that with time elapsed, the activities of some protein metabolizing enzymes increased, and some decreased. In this study, digestive enzymes, trypsin and lipase increased gradually. After heat stress, Ea and Ec change significantly. Yellowfin tuna muscles use lipids in response to sharp temperature increases at high temperatures, red muscles respond to temperature changes by increasing energy in the early stages, but not nearly as much, and white muscles reduce lipids.

  • 相关文献
作者其他论文 更多>>