A gold nanoparticle strip for simultaneously evaluating FMDV immunized antibody level and discriminating FMDV vaccinated animals from infected animals
文献类型: 外文期刊
作者: Yang, Suzhen 1 ; Sun, Yaning 1 ; Yang, Jifei 1 ; Liu, Yunchao 1 ; Feng, Hua 1 ; Zhang, Gaiping 1 ;
作者机构: 1.Henan Acad Agr Sci, Henan Prov Key Lab Anim Immunol, Zhengzhou, Henan, Peoples R China
2.Henan Agr Univ, Coll Anim Sci & Vet Med, 63 Nongye Rd, Zhengzhou 450002, Henan, Peoples R China
3.Jiangsu Coinnovat Ctr Prevent & Control Important, Yangzhou, Jiangsu, Peoples R China
期刊名称:RSC ADVANCES ( 影响因子:3.361; 五年影响因子:3.39 )
ISSN:
年卷期: 2019 年 9 卷 52 期
页码:
收录情况: SCI
摘要: A gold nanoparticle strip was developed for rapidly evaluating FMDV type O antibody level and simultaneously discriminating FMDV vaccinated animals from infected animals. The strip was established depending on the colloidal gold nanoparticle labeling technique. Staphylococcal protein A colloidal gold nanoparticles were used as a probe. The epitope antigens of FMDV structural proteins and nonstructural proteins were dispensed on a nitrocellulose membrane as two test lines, respectively, and goat anti-pig antibody IgG was used as a control line. The assay was evaluated with FMDV immunized, infected sera and positive sera for another virus. The results showed the specificities of the T1 and T2 lines were 95.17% and 100% respectively. The sensitivity was in accordance with commercial ELISA kits. The coincidence rate of the new strip with 3ABC Mab-bELISA and LPB-ELISA was 95.5% and 93.13%, respectively. In summary, this experimental strip could provide a simple, inexpensive and rapid approach for onsite detection of FMDV type O antibody level and discrimination of FMDV vaccinated from infected animals without any expensive instrument.
- 相关文献
作者其他论文 更多>>
-
Potential Pathogenicity and Genetic Characteristics of a Live-Attenuated Classical Swine Fever Virus Vaccine Derivative Variant
作者:Guo, Zhenhua;Xing, Guangxu;Jin, Qianyue;Lu, Qingxia;Zhang, Gaiping;Wang, Leyi;Wang, Leyi;Zhang, Gaiping;Zhang, Gaiping
关键词:
-
An immunochromatographic strip sensor for marbofloxacin residues
作者:Yang, Xingdong;Zhang, Qianqian;Yang, Xingdong;Li, Qingmei;Yang, Jifei;Hu, Xiaofei;Kwee, Sharon
关键词:
-
Proteomic analysis reveals the antiviral effects of baicalin on pseudorabies virus
作者:Niu, Qiaoge;Zhang, Gaiping;Niu, Qiaoge;Zhou, Chuanjie;Li, Rui;Guo, Junqing;Qiao, Songlin;Chen, Xin-xin;Zhang, Gaiping;Zhang, Gaiping
关键词:Baicalin; Pseudorabies virus; ROS; F3; NFU1; CEBPB
-
Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives
作者:Yao, Wanzi;Zhang, Yifeng;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:Marine peptides; Anti-aging; Preparation; Mechanisms; Oxidative stress; Signaling pathways
-
Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses
作者:Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Ding, Peiyang;Liu, Hongliang;Zhu, Xifang;Chen, Yumei;Zhou, Jingming;Wang, Aiping;Zhang, Gaiping;Chai, Shujun;Zhang, Gaiping;Zhang, Gaiping
关键词:Mucoadhesive; Thiolated chitosan; Influenza nanovaccine; M2e; Nucleoprotein
-
Identification of the Linear Fc-Binding Site on the Bovine IgG1 Fc Receptor (boFcγRIII) Using Synthetic Peptides
作者:Wang, Ruining;Guo, Junqing;Yang, Jifei;Li, Qingmei;Zhang, Gaiping;Wang, Ruining;Li, Ge;Wang, Xun;Zhang, Gaiping;Zhang, Gaiping
关键词:BoFc gamma RIII; Fc-binding site; bovine IgG1; synthetic peptides
-
Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization
作者:Li, Minghui;Sun, Xueke;Wang, Siqiao;Wang, Yanan;Wang, Yue;Zhang, Gaiping;Li, Minghui;Sun, Xueke;Chen, Yilan;Wang, Siqiao;Li, Qin;Wang, Yanan;Wang, Yue;Li, Ruiqi;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:PEDV; S1 protein; Nanoparticle; Subunit vaccine; Mucosal immunity