文献类型: 外文期刊
作者: Han, Dong 1 ; Liu, Shuaibing 1 ; Du, Ying 1 ; Xie, Xinrui 1 ; Fan, Lingling 1 ; Lei, Lei 1 ; Li, Zhenhong 4 ; Yang, Hao 1 ;
作者机构: 1.Minist Agr China, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
2.China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
3.China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
4.Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词: remote sensing; Sentinel-1; Sentinel-2; winter wheat; crop water content
期刊名称:SENSORS ( 影响因子:3.576; 五年影响因子:3.735 )
ISSN:
年卷期: 2019 年 19 卷 18 期
页码:
收录情况: SCI
摘要: This study aims to efficiently estimate the crop water content of winter wheat using high spatial and temporal resolution satellite-based imagery. Synthetic-aperture radar (SAR) data collected by the Sentinel-1 satellite and optical imagery from the Sentinel-2 satellite was used to create inversion models for winter wheat crop water content, respectively. In the Sentinel-1 approach, several enhanced radar indices were constructed by Sentinel-1 backscatter coefficient of imagery, and selected the one that was most sensitive to soil water content as the input parameter of a water cloud model. Finally, a water content inversion model for winter wheat crop was established. In the Sentinel-2 approach, the gray relational analysis was used for several optical vegetation indices constructed by Sentinel-2 spectral feature of imagery, and three vegetation indices were selected for multiple linear regression modeling to retrieve the wheat crop water content. 58 ground samples were utilized in modeling and verification. The water content inversion model based on Sentinel-2 optical images exhibited higher verification accuracy (R = 0.632, RMSE = 0.021 and nRMSE = 19.65%) than the inversion model based on Sentinel-1 SAR (R = 0.433, RMSE = 0.026 and nRMSE = 21.24%). This study provides a reference for estimating the water content of wheat crops using data from the Sentinel series of satellites.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity



