您好,欢迎访问中国水产科学研究院 机构知识库!

Dietary supplementation of teprenone potentiates thermal and hypoxia tolerance as well as cellular stress protection of Epinephelus coioides juveniles reared under multiple stressors

文献类型: 外文期刊

作者: Dong, Hongbiao 1 ; Zheng, Xiaoting 1 ; Kumar, Vikash 3 ; Roy, Suvra 3 ; Duan, Yafei 1 ; Gao, Huanyun 1 ; Zhang, Jiason 1 ;

作者机构: 1.Chinese Acad Fishery Sci, South China Sea Fisheries Res Inst, Key Lab South China Sea Fishery Resources Exploit, Minist Agr & Rural Affairs,Key Lab Fishery Ecol &, Guangzhou 510300, Guangdong, Peoples R China

2.Shanghai Ocean Univ, Coll Fisheries & Life Sci, Shanghai 201306, Peoples R China

3.Univ Ghent, Fac Biosci Engn, Artemia Reference Ctr, Lab Aquaculture,Dept Anim Sci & Aquat Ecol, B-9000 Ghent, Belgium

关键词: Antioxidant status; Epinephelus coioides; Teprenone; Thermal stress; Hypoxia

期刊名称:AQUACULTURE ( 影响因子:4.242; 五年影响因子:4.723 )

ISSN: 0044-8486

年卷期: 2020 年 514 卷

页码:

收录情况: SCI

摘要: The present study was carried out to delineate the effect of teprenone on thermal and hypoxia tolerance and antioxidative status of Epinephelus coioides juveniles reared under multiple stressors. Four groups of fish averaging 10.0 +/- 2 g, body length of 7.5 +/- 0.5 cm were randomly distributed in 16 fiberglass tanks in triplicates. A basal diet without teprenone was used as a control (C), and the other three diets were prepared by adding 100 mg teprenone (T1), 200 mg teprenone (T2) and 400 mg teprenone (T3) per kg of diet. After 15 days of feeding, teprenone was shown to be a potent inducer of antioxidant activity. The induction of antioxidant status was associated with the generation of resistance in E. coioides against subsequent thermal or hypoxia stress at 100 and 200 mg/kg teprenone incorporation in the diet. Our results also provide new insight into the mode of antioxidant action of teprenone, in which initial generation of antioxidant enzyme activity by the compound plays a key role. Overall results add new information about the bioactivity of teprenone and advanced our knowledge of this compound as a potential prophylactic agent to maintain homeostasis in fish against thermal stress and hypoxia.

  • 相关文献
作者其他论文 更多>>