Phenotyping analysis of maize stem using micro-computed tomography at the elongation and tasseling stages
文献类型: 外文期刊
作者: Zhang, Ying 1 ; Ma, Liming 1 ; Wang, Jinglu 1 ; Wang, Xiaodong 1 ; Guo, Xinyu 1 ; Du, Jianjun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, 11 Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
2.China Agr Univ, Coll Informat & Elect Engn, 17 Qinghua Donglu, Beijing 100083, Peoples R China
关键词: Maize stem; CT scanning; mu Phenotyping; Vascular bundle; Level set; Function zone
期刊名称:PLANT METHODS ( 影响因子:4.993; 五年影响因子:5.312 )
ISSN:
年卷期: 2020 年 16 卷 1 期
页码:
收录情况: SCI
摘要: Background Micro-computed tomography (mu CT) bring a new opportunity to accurately quantify micro phenotypic traits of maize stem, also provide comparable benchmark to evaluate its dynamic development at the different growth stages. The progressive accumulation of stem biomass brings manifest structure changes of maize stem and vascular bundles, which are closely related with maize varietal characteristics and growth stages. Thus, micro-phenotyping (mu Phenotyping) of maize stems is not only valuable to evaluate bio-mechanics and water-transport performance of maize, but also yield growth-based traits for quantitative traits loci (QTL) and functional genes location in molecular breeding. Result In this study, maize stems of 20 maize cultivars and two growth stages were imaged using mu CT scanning technology. According to the observable differences of maize stems from the elongation and tasseling stages, function zones of maize stem were firstly defined to describe the substance accumulation of maize stems. And then a set of image-based mu Phenotyping pipelines were implemented to quantify maize stem and vascular bundles at the two stages. The coefficient of determination (R-2) of counting vascular bundles was higher than 0.95. Based on the uniform contour representation, intensity-related, geometry-related and distribution-related traits of vascular bundles were respectively evaluated in function zones and structure layers. And growth-related traits of the slice, epidermis, periphery and inner zones were also used to describe the dynamic growth of maize stem. Statistical analysis demonstrated the presented method was suitable to the phenotyping analysis of maize stem for multiple growth stages. Conclusions The novel descriptors of function zones provide effective phenotypic references to quantify the differences between growth stages; and the detection and identification of vascular bundles based on function zones are more robust to determine the adaptive image analysis pipeline. Developing robust and effective image-based phenotyping method to assess the traits of stem and vascular bundles, is highly relevant for understanding the relationship between maize phenomics and genomics.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Three-Dimensional Time-Series Monitoring of Maize Canopy Structure Using Rail-Driven Plant Phenotyping Platform in Field
作者:Ma, Hanyu;Zhang, Dongsheng;Wen, Weiliang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Gou, Wenbo;Liang, Yuqiang;Zhang, Minggang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu
关键词:maize canopy; time-series phenotype; 3D point cloud; plot segmentation; marginal effect
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture
-
Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods
作者:Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhao, Yanxin;Song, Wei
关键词:maize; hybrids; stomatal phenotypes; high-throughput acquisition; deep learning



