您好,欢迎访问浙江省农业科学院 机构知识库!

Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin

文献类型: 外文期刊

作者: Guan, Jiehao 1 ; He, Kaiyu 2 ; Gunasekaran, Sundaram 1 ;

作者机构: 1.Univ Wisconsin, Dept Biol Syst Engn, 460 Henry Mall, Madison, WI 53706 USA

2.Zhejiang Acad Agr Sci, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Threats Qual &, Key Lab Informat Traceabil Agr Prod,Minist Agr &, Hangzhou 310021, Peoples R China

关键词: Antibiotics; Label-free detection; Differential pulse voltammetry; Electrochemical aptasensor; Nanomaterial modification; Tetrahedral DNA nanostructure

期刊名称:TALANTA ( 影响因子:6.556; 五年影响因子:5.77 )

ISSN: 0039-9140

年卷期: 2022 年 243 卷

页码:

收录情况: SCI

摘要: Antibiotics are widely used for improving the living conditions of livestock. However, residual antibiotics present in animal products induce several human diseases. Therefore, a simple, rapid, and cost-effective system for detecting and monitoring the presence of antibiotics in foods is in great demand to alleviate safety concerns. In this study, a highly sensitive and selective aptameric electrochemical sensing platform was designed based on nanomaterial modification and DNA nanotechnology. Electrochemically reduced graphene oxide and gold nanoparticles were used to modify the working surface of a screen-printed electrode to enhance electrical conductivity and biocompatibility. The electrode surface was further modified with self-assembled tetrahedral DNA nanostructures (TDN) to improve the detection sensitivity. The TDN allowed controlling the nano-spacing of aptamers immobilized on the electrode surface and placing aptamers in a solution-phase-like detecting environment to improve the target-binding efficiency without signal amplification modules. Differential pulse voltammetry was employed to measure electrical signals in proportion to the amount of ampicillin, the target antibiotic, present in buffer and spiked milk samples. The designed aptasensor was able to detect and measure the target ampicillin in less than 30 min over a wide concentration range of 10 pM to 1 mM, with a limit of detection of 1 pM, which is 100 times better than when using the same sensing probe without TDN modification. The aptasensor was reusable by simply rinsing with deionized water, remained stable during 15-day storage, and yielded reproducible results.

  • 相关文献
作者其他论文 更多>>