您好,欢迎访问广东省农业科学院 机构知识库!

A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells

文献类型: 外文期刊

作者: Feng, Chunhua 1 ; Ma, Le 1 ; Li, Fangbai 2 ; Mai, Hongjian 1 ; Lang, Xuemei 1 ; Fan, Shuanshi 1 ;

作者机构: 1.S China Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Sch Chem & Chem Engn, Guangzhou 510640, Peoples R China

2.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Peoples R China

关键词: Microbial fuel cell;Polypyrrole;Anthraquinone-2;6-disulphonic disodium

期刊名称:BIOSENSORS & BIOELECTRONICS ( 影响因子:10.618; 五年影响因子:9.323 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This study reports a new approach of improving performance of microbial fuel cells (MFCs) by using a polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode. The immobilization of AQDS on a carbon felt anode was accomplished by electropolymerization of pyrrole while using AQDS as the dopant. The dual-chamber MFC operated with this modified anode in the presence of Shewanella decolorationis S12 showed the maximum power density of 1303 mW m(-2), which was 13 times larger than that obtained from the MFC equipped with an unmodified anode. Evidence from cyclic voltammerty (CV) and scanning electron microscopy (SEM) results indicated that the increase in power generation was assigned to the increased surface area of anode, the enhanced electron-transfer efficiency from the bacteria to the anode via immobilized AQDS, and an increase in the number of bacteria attached to anode.

  • 相关文献

[1]A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process. Feng, Chunhua,Liu, Haiyang,Lang, Xuemei,Fan, Shuanshi,Li, Fangbai.

[2]Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Zhou, Lihua,Fu, Peng,Cai, Xixi,Zhou, Shungui,Yuan, Yong.

[3]Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria. Li, Fangbai,Feng, Chunhua,Yue, Xianjun,Wei, Chaohai.

[4]Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells. Deng, Lifang,Yuan, Haoran,Ruan, Yingying,Chen, Yong,Cai, Xixi,Zhou, Shungui,Yuan, Yong,Deng, Lifang,Yuan, Haoran,Ruan, Yingying.

[5]Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. Wang, Xiang-Qin,Liu, Chuan-Ping,Yuan, Yong,Li, Fang-bai.

[6]A Simple Method of Improving Microbial Fuel-Cell Performance Based on Polyaniline/Carbon Composite Anodes. Yuan, Yong,Kim, Sunghyun.

[7]Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Yuan, Yong,Shin, Hyosul,Kang, Chan,Kim, Sunghyun.

[8]Microbial fuel cell with an azo-dye-feeding cathode. Liu, Liang,Li, Fang-bai,Liu, Liang,Feng, Chun-hua,Li, Xiang-zhong,Liu, Liang.

[9]In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Liu, Liang,Yuan, Yong,Li, Fang-bai,Liu, Liang,Feng, Chun-hua,Liu, Liang.

[10]Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells. Li, Fangbai,Liu, Liang,Tong, Hui,Feng, Chunhua,Feng, Chunhua,Liu, Yongye,Yue, Xianjun,Sun, Kewen.

[11]Electricity generation from starch processing wastewater using microbial fuel cell technology. Lu, Na,Zhang, Jin-tao,Ni, Jin-ren,Lu, Na,Zhou, Shun-gui,Zhang, Jin-tao.

作者其他论文 更多>>