A Robust Deep Learning Approach for the Quantitative Characterization and Clustering of Peach Tree Crowns Based on UAV Images
文献类型: 外文期刊
作者: Hu, Jun 1 ; Zhang, Yanfeng 2 ; Zhao, Dandan 1 ; Yang, Guijun 3 ; Chen, Feiyun 5 ; Zhou, Chengquan 6 ; Chen, Wenxuan 1 ;
作者机构: 1.Zhejiang Acad Agr Sci, Food Sci Inst, Hangzhou 310000, Peoples R China
2.Anhui Acad Agr Sci, Inst Soil & Fertilizer, Hefei 230041, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
5.Anhui Univ, Sch Life Sci, Hefei 230601, Peoples R China
6.Zhejiang Acad Agr Sci, Inst Agr Equipment, Hangzhou 310000, Peoples R China
关键词: Vegetation; Autonomous aerial vehicles; Laser radar; Remote sensing; Agriculture; Volume measurement; Monitoring; Crown measurement; deep learning; shape clustering; unmanned aerial vehicle (UAV) images; volume estimation
期刊名称:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING ( 影响因子:8.125; 五年影响因子:8.137 )
ISSN: 0196-2892
年卷期: 2022 年 60 卷
页码:
收录情况: SCI
摘要: The accurate large-scale measurement of peach crowns is vital in horticultural science and the optimization of orchard management. Nowadays, numerous crown parameters (e.g., crown area, height, and volume) can be obtained via the analysis of point clouds or photographs. Current laser-based sensors provide the required reliable and accurate information; however, they are costly and time-consuming. Therefore, a simpler approach for crown measurement is required. For this purpose, this study presents a pipeline for the monitoring and clustering of 259 peach tree crowns based on unmanned aerial vehicle (UAV) images of a peach orchard in Southeast China. Considering the limitation that the original aerial image dataset contains little information, a data augmentation process is adopted, and an efficient deep learning architecture based on conditional generative adversarial networks (cGANs) was designed to extract the crown area. Then, the shape of the crown area was clustered using an edge detection process and a k-means algorithm. Finally, an ellipsoid volume method (EVM) was applied to estimate the crown volume. Five indicators-namely, Qseg, Sr, Precision, Recall, and F-measure-were employed to evaluate the crown extraction effects, and the average results for testing samples were 0.832, 0.847, 0.851, 0.828, and 0.846, respectively. Compared with other approaches-namely, fully convolutional network (FCN), U-Net, SegNet21, the excess green index (ExG), and the color index of vegetation extraction (CIVE)-the proposed cGAN model performs better, achieving an accuracy improvement of 5%-25%. For the estimation of crown volume, using measurements from a light detection and ranging (LIDAR) scanner as a reference, the correlation coefficient and relativeroot-mean-square error (R-RMSE) were found to be 0.836% and 14.93%, respectively. Overall, the results demonstrate that the proposed method is feasible for measuring peach tree crowns. The wide application of such technology would facilitate applied research in plant phenotyping and precision horticulture.
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
作者:Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Yang, Xiaodong;Meng, Yang;Jiang, Xiangtai;Xue, Hanyu
关键词:different varieties of grapes; leaf chlorophyll content; hyperspectral remote sensing; data-processing; RFR
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
-
Ectoine maintains the flavor and nutritional quality of broccoli during postharvest storage
作者:Yue, Xiaozhen;Tian, Tian;Zhao, Yaqi;Shi, Junyan;Ran, Jie;Yuan, Shuzhi;Xu, Xiaodi;Zuo, Jinhua;Wang, Qing;Tian, Tian;Feng, Bihong;Duan, Wenhui;Zhang, Yanfeng
关键词:Sulfur metabolism; Fatty acid biosynthesis; Amino acid biosynthesis; Volatile compounds
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH
-
Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Qi, Ning;Zhang, Wenjie;Yang, Hao;Zhang, Chengjian;Yang, Guijun;Xu, Bo;Feng, Haikuan;Chen, Riqiang;Qi, Ning;Zhang, Wenjie;Zhao, Dan;Yang, Hao;Zhao, Dan;Cheng, Jinpeng
关键词:Leaf area index (LAI); Leaf chlorophyll content (LCC); Canopy chlorophyll content (CCC); Broad -band vegetation indexes (VIs); A hybrid inversion model