文献类型: 外文期刊
作者: Yue, Jibo 1 ; Yang, Hao 2 ; Yang, Guijun 2 ; Fu, Yuanyuan 1 ; Wang, Han 2 ; Zhou, Chengquan 2 ;
作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr Minist Agr Ch, Beijing 100097, Peoples R China
3.Southwest Forestry Univ, Coll Forestry, Kunming 650224, Peoples R China
4.Zhejiang Acad Agr Sci, Inst Agr Equipment, Hangzhou, Peoples R China
关键词: Leaf area index (LAI); Leaf dry matter content; Leaf biomass; Crop height; Stem
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 205 卷
页码:
收录情况: SCI
摘要: The accurate estimation of crop above-ground biomass (AGB) can assist in crop growth monitoring and grain yield prediction. Remote sensing has been widely used for AGB estimation at regional and local scales in recent years. However, optical remote sensing spectral indices (SIs) become saturated at medium-to-high crop covers. The combined use of remote sensing techniques and statistical regression models is not based on an under-standing of how crop leaves and vertical organs contribute to the crop AGB. This causes difficulties in measuring the biomass stored in vertical organs (e.g., plant stem, wheat-spike, maize-tassel; abbreviated as AGBv) using optical remote sensing. This study aims to develop an unmanned aerial vehicle (UAV)-based vertically growing crop AGB (VGC-AGB) model. We defined Csm (g/m) to describe the crop stem and reproductive organs' average dry mass content. This was done to improve the estimation of AGBv. The crop leaf area index (LAI, m(2)/m(2)), leaf dry matter content (Cm, g/m(2)), height (Ch, m), and density (Cd, m(-2)) were used in the VGC-AGB. The VGC-AGB calculated crop leaf AGB (AGBl) using LAI x C-m (g/m(2)) and AGBv using C-d x C-h x C-sm (g/m(2)). The proposed VGC-AGB (AGB = LAI x C-m + C-d x C-h x C-sm) was verified using field and UAV-based hyperspectral datasets of winter-wheat and summer-maize at three growth stages. Our results indicate that UAV-based VGC-AGB (R-2 = 0.92-0.93, RMSE = 68.82-75.15 g/m(2)) is superior to the statistical regression model that is based on remote sensing SIs and CSMs (R-2 - 0.77, RMSE - 134.94 g/m(2)). The results indicate that the UAV-based VGC-AGB supports the analysis of crop photosynthetic product transfers and high-performance UAV-based high-performance non-destructive AGB monitoring.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral