Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydis
文献类型: 外文期刊
作者: Wang, Jinglu 1 ; Zhang, Ying 1 ; Du, Jianjun 1 ; Pan, Xiaodi 1 ; Ma, Liming 2 ; Shao, Meng; Guo, Xinyu;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing Res Ctr Informat Technol Agr, 11 Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing Res Ctr Informat Technol Agr, 11 Shuguang Huayuan Middle Rd, Beijing 100097, Peoples R C
关键词: maize; gene expression; Ustilago maydis; differentially expressed genes
期刊名称:GENOME ( 影响因子:2.166; 五年影响因子:2.474 )
ISSN: 0831-2796
年卷期: 2018 年 61 卷 7 期
页码:
收录情况: SCI
摘要: Although many gene expression profiling studies of maize leaves infected with Ustilago maydis have been published, heterogeneity of the results, caused by various data processing methods and pathogenic strains in different data sets, remains strong. Hence, we conducted a combined analysis of six genome-wide expression data sets of maize leaves infected with five different U. maydis strains by using the same pre-processing and quality control procedures. Six data sets were regrouped into five groups according to pathogenic strain used. Subsequently, each group of data set was processed by Multi-array Average for pre-processing and by pair-wise Pearson correlation for quality control. The differentially expressed genes were calculated by a standard linear mixed-effect model and then validated by various sensitivity analysis and multiple evidences. Finally, 44 unique differentially expressed genes were identified. Pathway enrichment analysis indicated that these genes related to response to fungus, oxidation-reduction, transferase activity, and several carbohydrate metabolic and catabolic processes. In addition, the hub genes within protein-protein interaction networks showed high relevance with the basic pathogenesis. We report a highly credible differentially expressed list, and the genes with multiple validations may denote a common signature of U. maydis in maize, which provides a new window for disease-resistant protection of maize plants.
- 相关文献
作者其他论文 更多>>
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词:
-
In-capillary aptamer-functionalized dispersive solid-phase microextraction for dynamic transfer enrichment and miniature mass spectrometry analysis: A magnetically driven capture-and-release strategy
作者:Li, Linsen;Zhang, Ying;Lv, Yueguang;Ma, Qiang;Li, Linsen;Qu, Feng;Zhao, Liping
关键词:Aptamer; Dispersive magnetic solid-phase micro; extraction; Extraction nanoelectrospray ionization; Dicationic ionic liquid; Charge inversion; Miniature mass spectrometer
-
Transcriptome Analysis and Metabolic Profiling Reveal the Key Regulatory Pathways in Drought Stress Responses and Recovery in Tomatoes
作者:Shu, Jinshuai;Wang, Xiaoxuan;Liu, Fuzhong;Zhang, Ying;Chen, Yuhui;Zhang, Lili;Liu, Guiming
关键词:transcriptomics; metabolomics; drought stress; rehydration; genes; pathway
-
Plant microphenotype: from innovative imaging to computational analysis
作者:Zhang, Ying;Gu, Shenghao;Du, Jianjun;Huang, Guanmin;Lu, Xianju;Wang, Jinglu;Guo, Xinyu;Zhao, Chunjiang;Shi, Jiawei;Yang, Wanneng
关键词:computational phenotyping; genetic effects; imaging technique; microphenotype; trait identification
-
The alleviative effect of C-phycocyanin peptides against TNBS-induced
作者:Wen, Weiliang;Wu, Sheng;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Lu, Xianju;Wu, Sheng;Lu, Xianju;Liu, Xiang;Gu, Shenghao;Guo, Xinyu;Wu, Sheng;Liu, Xiang;Gu, Shenghao;Guo, Xinyu
关键词:Three-dimensional point cloud; Semantic reconstruction; Maize leaf; Plant phenotyping
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view



