A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera
文献类型: 外文期刊
作者: Yue, Jibo 1 ; Feng, Haikuan 1 ; Jin, Xiuliang 3 ; Yuan, Huanhuan 1 ; Li, Zhenhai 1 ; Zhou, Chengquan 1 ; Yang, Guijun; 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr China, Beijing 100097, Peoples R China
2.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China
3.INRA, Environm Mediterraneen & Modelisat Agrohydrosyst, F-84914 Avignon, France
4.Chinese Acad Sci, I
关键词: crop surface model; crop height; aboveground biomass; LAI; random forest regression; partial least squares regression
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2018 年 10 卷 7 期
页码:
收录情况: SCI
摘要: Timely and accurate estimates of crop parameters are crucial for agriculture management. Unmanned aerial vehicles (UAVs) carrying sophisticated cameras are very pertinent for this work because they can obtain remote-sensing images with higher temporal, spatial, and ground resolution than satellites. In this study, we evaluated (i) the performance of crop parameters estimates using a near-surface spectroscopy (350 similar to 2500 nm, 3 nm at 700 nm, 8.5 nm at 1400 nm, 6.5 nm at 2100 nm), a UAV-mounted snapshot hyperspectral sensor (450 similar to 950 nm, 8 nm at 532 nm) and a high-definition digital camera (Visible, R, G, B); (ii) the crop surface models (CSMs), RGB-based vegetation indices (VIs), hyperspectral-based VIs, and methods combined therefrom to make multi-temporal estimates of crop parameters and to map the parameters. The estimated leaf area index (LAI) and above-ground biomass (AGB) are obtained by using linear and exponential equations, random forest (RF) regression, and partial least squares regression (PLSR) to combine the UAV based spectral VIs and crop heights (from the CSMs). The results show that: (i) spectral VIs correlate strongly with LAI and AGB over single growing stages when crop height correlates positively with AGB over multiple growth stages; (ii) the correlation between the VIs multiplying crop height and AGB is greater than that between a single VI and crop height; (iii) the AGB estimate from the UAV-mounted snapshot hyperspectral sensor and high-definition digital camera is similar to the results from the ground spectrometer when using the combined methods (i.e., using VIs multiplying crop height, RF and PLSR to combine VIs and crop heights); and (iv) the spectral performance of the sensors is crucial in LAI estimates (the wheat LAI cannot be accurately estimated over multiple growing stages when using only crop height). The LAI estimates ranked from best to worst are ground spectrometer, UAV snapshot hyperspectral sensor, and UAV high-definition digital camera.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



