您好,欢迎访问上海市农业科学院 机构知识库!

Efficient virus-induced gene silencing in Brassica rapa using a turnip yellow mosaic virus vector

文献类型: 外文期刊

作者: Yu, J. 1 ; Yang, X-D 2 ; Wang, Q.; Gao, L-W 1 ; Yang, Y. 1 ; Xiao, D. 1 ; Liu, T-K 1 ; Li, Y. 1 ; Hou, X-L 1 ; Zhang, C-W 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Hort, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China

2.Shanghai Acad Agr Sci, Protected Hort Inst, Shanghai 201

关键词: particle bombardment; photobleaching; phylogenetic tree; phytoene desaturase; vector construction

期刊名称:BIOLOGIA PLANTARUM ( 影响因子:1.747; 五年影响因子:2.146 )

ISSN: 0006-3134

年卷期: 2018 年 62 卷 4 期

页码:

收录情况: SCI

摘要: Virus-induced gene silencing (VIGS) is a post-transcriptional gene silencing method used for unraveling gene functions. As an attractive alternative to mutant collections or stable transgenic plants, it has been widely used in reverse-genetics studies owing to its ease use and quick turnaround time. Turnip yellow mosaic virus (TYMV) has the ability to induce VIGS in Arabidopsis thaliana. However, the conventional vector construction is difficult and the efficiencies of the infection methods are low. Here, we improved the vector construction and viral infection methods, inserted an inverted-repeat fragment of the phytoene desaturase gene into a TYMV-derived vector by homologous recombination and transformed Brassica rapa with plasmid DNA harboring a cDNA copy of the TYMV genome through particle bombardment. An apparent photobleaching phenotype was detected and efficient VIGS was induced. An 80-bp fragment was sufficient to produce VIGS in leaves, stems, roots, flowers, siliques, and stalks of B. rapa. Because TYMV has a wide host range in Brassica, the VIGS system described here will contribute to the improvement of high-throughput technology and efficient functional research in B. rapa and other Brassicaceae crops.

  • 相关文献
作者其他论文 更多>>