A Cloud-Based Digital Farm Management System for Vegetable Production Process Management and Quality Traceability
文献类型: 外文期刊
作者: Yang, Feng 1 ; Wang, Kaiyi 2 ; Han, Yanyun 2 ; Qiao, Zhong 1 ;
作者机构: 1.China Agr Univ, Coll Econ & Management, Beijing 100083, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: farm management; auto-identification technology; production process; quality traceability; production cost
期刊名称:SUSTAINABILITY ( 影响因子:3.251; 五年影响因子:3.473 )
ISSN: 2071-1050
年卷期: 2018 年 10 卷 11 期
页码:
收录情况: SCI
摘要: Farm Management Information Systems (FMISs) are being expanded to improve operation efficiency, reduce inputs, and ensure compliance with standards and regulations. However, this goal is difficult to attain in the vegetable sector, where data acquisition is time-consuming and data at different stages is fragmented by the potential diversity of crops and multiple batches cultivated at any given farm. This applies, in particular, to farms in China, which have small areas and low degrees of mechanization. This study presents an integrated approach to track and trace production efficiently through our Digital Farm Management System (DFMS), which adopts the cloud framework and utilizes Quick Response (QR) codes and Radio Frequency Identification (RFID) technology. Specifically, a data acquisition system is proposed that runs on a smartphone for the efficient gathering of planting information in the field. Moreover, DFMS generates statistics and analyses of planting areas, costs, and yields. DFMS meets the FMIS requirements and provides the accurate tracking and tracing of the production for each batch in an efficient manner. The system has been applied in a large-scale vegetable production enterprise, consisting of 12 farms distributed throughout China. This application shows that DFMS is a highly efficient solution for precise vegetable farm management.
- 相关文献
作者其他论文 更多>>
-
Prediction of maize cultivar yield based on machine learning algorithms for precise promotion and planting
作者:Han, Yanyun;Wang, Kaiyi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi;Zhang, Qi
关键词:Prediction of maize cultivar yield; Machine learning; Random forest; Levenberg - Marquardt neural network; Multilayer perceptron neural network; Assessment of varieties
-
Developing a comprehensive evaluation model of variety adaptability based on machine learning method
作者:Han, Yanyun;Wang, Kaiyi;Zhang, Qi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi;Han, Yanyun;Wang, Kaiyi;Zhang, Qi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi
关键词:Maize variety adaptability evaluation; Variety adaptability comprehensive evaluation index; Entropy weight method; Machine learning method
-
TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield
作者:Li, Jinlong;Zhang, Dongfeng;Yang, Feng;Zhang, Qiusi;Pan, Shouhui;Zhao, Xiangyu;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Zhao, Chunjiang;Li, Jinlong;Zhang, Dongfeng;Yang, Feng;Zhang, Qiusi;Pan, Shouhui;Zhao, Xiangyu;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Zhao, Chunjiang;Yang, Jinliang;Yang, Jinliang
关键词:crop; genotype to phenotype; transfer learning; yield prediction; multi-trait
-
Prediction of corn variety yield with attribute-missing data via graph neural network
作者:Yang, Feng;Zhang, Dongfeng;Han, Yanyun;Zhang, Qiusi;Zhang, Qi;Liu, Zhongqiang;Wang, Kaiyi;Zhang, Yuqing;Zhang, Yong;Han, Yanyun;Liu, Zhongqiang;Wang, Kaiyi;Zhang, Qiusi;Zhang, Qi;Zhang, Chenghui
关键词:Corn variety yield prediction; Graph neural network; Data imputation; Adversarial learning
-
Maize yield prediction using federated random forest
作者:Zhang, Qiusi;Wang, Kaiyi;Zhao, Chunjiang;Zhang, Qiusi;Zhao, Xiangyu;Han, Yanyun;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Wang, Kaiyi;Zhao, Chunjiang;Zhang, Qiusi;Zhao, Xiangyu;Han, Yanyun;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Wang, Kaiyi;Zhao, Chunjiang
关键词:Yield prediction; Joint breeding; Federated learning; Intelligent agriculture
-
Precise Recommendation Method of Suitable Planting Areas of Maize Varieties Based on Knowledge Graph
作者:Zou, Yidong;Zhao, Chunjiang;Zou, Yidong;Pan, Shouhui;Yang, Feng;Zhang, Dongfeng;Han, Yanyun;Zhao, Xiangyu;Wang, Kaiyi;Zhao, Chunjiang;Zou, Yidong;Pan, Shouhui;Yang, Feng;Zhang, Dongfeng;Han, Yanyun;Zhao, Xiangyu;Wang, Kaiyi;Zhao, Chunjiang
关键词:maize varieties; knowledge graph; recommendation model; RippleNet; county-scale
-
A variety test platform for the standardization and data quality improvement of crop variety tests
作者:Yang, Feng;Liu, Zhongqiang;Wang, Xiaofeng;Zhang, Qiusi;Han, Yanyun;Zhao, Xiangyu;Pan, Shouhui;Wang, Shufeng;Zhang, Qi;Wang, Kaiyi;Wang, Yuxi;Qiu, Jun;Wang, Xiaofeng;Zhang, Qiusi;Han, Yanyun;Wang, Shufeng;Zhang, Qi;Zhao, Xiangyu;Pan, Shouhui;Wang, Kaiyi;Yang, Shuo
关键词:crop variety test; trait data; standardization; data quality control; statistical analysis



