Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices
文献类型: 外文期刊
作者: Yue, Jibo 1 ; Yang, Guijun 2 ; Tian, Qingjiu 1 ; Feng, Haikuan 2 ; Xu, Kaijian 1 ; Zhou, Chengquan 2 ;
作者机构: 1.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China
2.Beijing Res Ctr Informat Technol Agr, Minist Agr China, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
3.Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
关键词: Unmanned aerial vehicle; Vegetation indices; Ultrahigh ground-resolution image; Image textures; Gray-tone spatial-dependence matrix; Reproductive growth stages
期刊名称:ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING ( 影响因子:8.979; 五年影响因子:9.948 )
ISSN: 0924-2716
年卷期: 2019 年 150 卷
页码:
收录情况: SCI
摘要: When dealing with multiple growth stages, estimates of above-ground biomass (AGB) based on optical vegetation indices (VIs) are difficult for two reasons: (i) optical VIs saturate at medium-to-high canopy cover, and (ii) organs that grow vertically (e.g., biomass of reproductive organs and stems) are difficult to detect by canopy spectral VIs. Although several significant improvements have been made for estimating AGB by using narrow band hyperspectral VIs, synthetic aperture radar, laser intensity direction and ranging, the crop surface model technique, and combinations thereof, applications of these new techniques have been limited by cost, availability, data-processing difficulties, and high dimensionality. The present study thus evaluates the use of ultrahigh-ground-resolution image textures, VIs, and combinations thereof to make multiple temporal estimates and maps of AGB covering three winter-wheat growth stages. The selected gray-tone spatial-dependence matrix based image textures (e.g., variance, entropy, data range, homogeneity, second moment, dissimilarity, contrast, correlation) are calculated from 1-, 2-, 5-, 10-, 15-, 20-, 25-, and 30-cm-ground-resolution images acquired by using an inexpensive RGB sensor mounted on an unmanned aerial vehicle (UAV). Optical-VI data were obtained by using a ground spectrometer to analyze UAV-acquired RGB images. The accuracy of AGB estimates based on optical VIs varies, with validation R-2: 0.59-0.78, root mean square error (RMSE): 1.22-1.59 t/ha, and mean absolute error (MAE): 1.03-1.27 t/ha. The most accurate AGB estimate was obtained by combining image textures and VIs, which gave R-2: 0.89, MAE: 0.67 t/ha, and RMSE: 0.82 t/ha. The results show that (i) the eight selected textures from ultrahigh-ground-resolution images were significantly related to AGB, (ii) the combined use of image textures from 1- to 30-cm-ground-resolution images and VIs can improve the accuracy of AGB estimates as compared with using only optical VIs or image textures alone; and (iii) high AGB values from winter-wheat reproductive growth stages can be accurately estimated by using this method; (iv) high estimates of winter-wheat AGB (8-14 t/ha) using the proposed combined method (DIS1, SE30, B460, B560, B670, EVI2 using MSR) show a 22.63% (nRMSE) improvement compared with using only spectral VIs (LCI, NDVI using MSR), and a 21.24% (nRMSE) improvement compared with using only image textures (COR1, DIS1, SE30, EN30 using MSR). Thus, the combined use of image textures and VIs can help improve estimates of AGB under conditions of high canopy coverage.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



