Automatic Counting of in situ Rice Seedlings from UAV Images Based on a Deep Fully Convolutional Neural Network
文献类型: 外文期刊
作者: Wu, Jintao 1 ; Yang, Guijun 1 ; Yang, Xiaodong 1 ; Xu, Bo 2 ; Han, Liang 1 ; Zhu, Yaohui 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Minist Agr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
关键词: rice seedlings; object counting; computer vision; deep learning; fully convolutional neural networks
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2019 年 11 卷 6 期
页码:
收录情况: SCI
摘要: The number of rice seedlings in the field is one of the main agronomic components for determining rice yield. This counting task, however, is still mainly performed using human vision rather than computer vision and is thus cumbersome and time-consuming. A fast and accurate alternative method of acquiring such data may contribute to monitoring the efficiency of crop management practices, to earlier estimations of rice yield, and as a phenotyping trait in breeding programs. In this paper, we propose an efficient method that uses computer vision to accurately count rice seedlings in a digital image. First, an unmanned aerial vehicle (UAV) equipped with red-green-blue (RGB) cameras was used to acquire field images at the seedling stage. Next, we use a regression network (Basic Network) inspired by a deep fully convolutional neural network to regress the density map and estimate the number of rice seedlings for a given UAV image. Finally, an improved version of the Basic Network, the Combined Network, is also proposed to further improve counting accuracy. To explore the efficacy of the proposed method, a novel rice seedling counting (RSC) dataset was built, which consisted of 40 images (where the number of seedlings varied between 3732 and 16,173) and corresponding manually-dotted annotations. The results demonstrated high average accuracy (higher than 93%) between counts according to the proposed method and manual (UAV image-based) rice seedling counts, and very good performance, with a high coefficient of determination (R-2) (around 0.94). In conclusion, the results indicate that the proposed method is an efficient alternative for large-scale counting of rice seedlings, and offers a new opportunity for yield estimation. The RSC dataset and source code are available online.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity



