Accurate location of two conserved linear epitopes of PEDV utilizing monoclonal antibodies induced by S1 protein nanoparticles
文献类型: 外文期刊
作者: Li, Minghui 1 ; Wang, Yue 1 ; Wang, Yanan 1 ; Li, Ruiqi 2 ; Wang, Siqiao 1 ; Ding, Peiyang 3 ; Zhang, Gaiping 1 ;
作者机构: 1.Henan Agr Univ, Coll Vet Med, Zhengzhou 450046, Peoples R China
2.Henan Acad Agr Sci, Henan Prov Key Lab Anim Immunol, Zhengzhou 450002, Peoples R China
3.Zhengzhou Univ, Coll Life Sci, Zhengzhou 450001, Peoples R China
4.Longhu Lab, Zhengzhou, Peoples R China
5.Yangzhou Univ, Jiangsu Coinnovat Ctr Prevent & Control Important, Yangzhou 225009, Peoples R China
关键词: PEDV; Nanoparticles; Monoclonal antibody; Neutralizing epitope
期刊名称:INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES ( 影响因子:8.2; 五年影响因子:7.8 )
ISSN: 0141-8130
年卷期: 2023 年 253 卷
页码:
收录情况: SCI
摘要: Porcine Epidemic diarrhea virus (PEDV), which can result in severe vomiting, diarrhea, dehydration and death in newborn piglets, poses a great threat to the pig industry around the world. The S1 subunit of S protein is crucial for triggering neutralizing antibodies binding to the receptor. Based on the advantages of high immunogenicity and precise assembly of nanoparticles, the mi3 nanoparticles and truncated S1 protein were assembled by the SpyTag/SpyCatcher system and then expressed in HEK293F cells, whereafter high-efficiency monoclonal anti-bodies (mAbs) were produced and identified. The obtained five mAbs can bind to various genotypes of PEDV, including a mAb (12G) which can neutralize G1 and G2 genotypes of PEDV in vitro. By further identification of monoclonal antibody target sequences, 507FNDHSF512 and 553LFYNVTNSYG562 were first identified as B-cell linear epitopes, in which 553LFYNVTNSYG562 was a neutralizing epitope. Alanine scans identified the key amino acid sites of two epitopes. Moreover, the results of multiple sequence alignment analysis showed that these two epitopes were highly conserved in various subtype variants. In brief, these findings can serve as a basis for additional research of PEDV and prospective resources for the creation of later detection and diagnostic techniques.
- 相关文献
作者其他论文 更多>>
-
Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization
作者:Li, Minghui;Sun, Xueke;Wang, Siqiao;Wang, Yanan;Wang, Yue;Zhang, Gaiping;Li, Minghui;Sun, Xueke;Chen, Yilan;Wang, Siqiao;Li, Qin;Wang, Yanan;Wang, Yue;Li, Ruiqi;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:PEDV; S1 protein; Nanoparticle; Subunit vaccine; Mucosal immunity
-
Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway
作者:Kong, Zhengjie;Zhang, Yifeng;Guan, Kaifeng;Yao, Wanzi;Kang, Yu;Lu, Xinyi;Zhang, Gaiping;Chen, Xing;Gong, Lele;Wang, Lele;Zhang, Yuhang;Du, Yongkun;Sun, Aijun;Zhuang, Guoqing;Wan, Bo;Zhang, Gaiping;Zhao, Jianguo;Zhang, Gaiping;Zhang, Gaiping
关键词:pseudorabies virus; cGAS-STING; tegument protein US2; TRIM21; immune invasion
-
IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner
作者:Shi, Xibao;Wei, Menglu;Feng, Yuwen;Yang, Yuanhao;Zhang, Xiaozhuan;Chen, Hao;Xing, Yuqi;Wang, Keqi;Wang, Wensheng;Wang, Li;Zhang, Gaiping;Wang, Aiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Shi, Xibao;Zhang, Gaiping
关键词:IFN-gamma-inducible protein 16; interferon gene-stimulating protein; retinoic acid-inducible gene I; type I interferon
-
Response of photosynthetic characteristics and antioxidant system in the leaves of safflower to NaCl and NaHCO3
作者:Song, Linlin;Zhou, Haijia;Meng, Li;Yu, Yongliang;Chen, Hongzhi;Feng, Yuwei;Chen, Shuo;Wang, Yue;Zhang, Huihui
关键词:Alkalinity; Antioxidant system; Photosynthesis; Salinity; Transcriptome analysis; WGCNA
-
A universal design of restructured dimer antigens: Development of a superior vaccine against the paramyxovirus in transgenic rice
作者:Ma, Fanshu;Zhang, Longxian;Zhang, Erqin;Zhang, Gaiping;Ma, Fanshu;Zhang, Gaiping;Ma, Fanshu;Zhang, Gaiping;Ma, Fanshu;Zhang, Gaiping;Ma, Fanshu;Xu, Qianru;Yang, Daichang;Li, Qingmei;Guo, Junqing;Li, Rui;Wang, Li;Wang, Yanan;Zhao, Xiangyue;Chai, Shujun;Yin, Heng;Li, Kunpeng;Rao, Zihe;Rao, Zihe;Rao, Zihe
关键词:structural vaccine; transgenic rice; BCR; paramyxovirus
-
Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2
作者:Li, Ruiqi;Chang, Zejie;Cheng, Anchun;Zhang, Gaiping;Li, Ruiqi;Zhang, Gaiping;Li, Ruiqi;Zhang, Gaiping;Li, Ruiqi;Chang, Zejie;Wang, Yanan;Li, Minghui;Chen, Yilan;Fan, Lu;Wang, Siqiao;Sun, Xueke;Liu, Siyuan;Zhang, Gaiping;Chang, Zejie;Wang, Yanan;Li, Minghui;Sun, Xueke;Liu, Siyuan;Zhang, Gaiping;Liu, Hongliang;Ding, Peiyang;Zhang, Gaiping
关键词:COVID-19; Coronavirus; SARS-CoV-2; Nanoparticle; Subunit vaccine; Variants
-
Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication
作者:Zhao, Shuang-shuang;Qian, Qisheng;Zhang, Gaiping;Zhao, Shuang-shuang;Qian, Qisheng;Chen, Xin-xin;Lu, Qingxia;Xing, Guangxu;Qiao, Songlin;Li, Rui;Zhang, Gaiping;Zhang, Gaiping
关键词:autophagy; GA fragmentation; GRASP65; Nsp2; PRRSV; RAB2; ULK1