Pseudorabies Virus Regulates the Extracellular Translocation of Annexin A2 To Promote Its Proliferation
文献类型: 外文期刊
作者: Weng, Maoyang 1 ; Guo, Zhenhua 2 ; Lu, Qingxia 2 ; Jin, Qianyue 2 ; Jiang, Yao 2 ; Wang, Fangyu 2 ; Guo, Junqing 2 ; Xing, Guangxu 2 ; Qiao, Songlin 2 ; Zhang, Gaiping 1 ;
作者机构: 1.Northwest A&F Univ, Coll Vet Med, Yangling, Shaanxi, Peoples R China
2.Henan Acad Agr Sci, Key Lab Anim Immunol Minist Agr, Henan Prov Key Lab Anim Immunol, Zhengzhou, Henan, Peoples R China
3.Peking Univ, Sch Adv Agr Sci, Beijing, Peoples R China
4.Longhu Modern Immun Lab, Zhengzhou, Henan, Peoples R China
5.Jiangsu Coinnovat Ctr Prevent & Control Important, Yangzhou, Peoples R China
关键词: pseudorabies virus; US3; annexin A2; Src; phosphorylation; antiviral; antiviral agents; protein phosphorylation
期刊名称:JOURNAL OF VIROLOGY ( 影响因子:5.4; 五年影响因子:4.9 )
ISSN: 0022-538X
年卷期: 2023 年 97 卷 3 期
页码:
收录情况: SCI
摘要: PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases.IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.
- 相关文献
作者其他论文 更多>>
-
Enhancing humoral and mucosal immune response of PED vaccine candidate by fusing S1 protein to nanoparticle multimerization
作者:Li, Minghui;Sun, Xueke;Wang, Siqiao;Wang, Yanan;Wang, Yue;Zhang, Gaiping;Li, Minghui;Sun, Xueke;Chen, Yilan;Wang, Siqiao;Li, Qin;Wang, Yanan;Wang, Yue;Li, Ruiqi;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Ding, Peiyang;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping
关键词:PEDV; S1 protein; Nanoparticle; Subunit vaccine; Mucosal immunity
-
Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway
作者:Kong, Zhengjie;Zhang, Yifeng;Guan, Kaifeng;Yao, Wanzi;Kang, Yu;Lu, Xinyi;Zhang, Gaiping;Chen, Xing;Gong, Lele;Wang, Lele;Zhang, Yuhang;Du, Yongkun;Sun, Aijun;Zhuang, Guoqing;Wan, Bo;Zhang, Gaiping;Zhao, Jianguo;Zhang, Gaiping;Zhang, Gaiping
关键词:pseudorabies virus; cGAS-STING; tegument protein US2; TRIM21; immune invasion
-
IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner
作者:Shi, Xibao;Wei, Menglu;Feng, Yuwen;Yang, Yuanhao;Zhang, Xiaozhuan;Chen, Hao;Xing, Yuqi;Wang, Keqi;Wang, Wensheng;Wang, Li;Zhang, Gaiping;Wang, Aiping;Zhang, Gaiping;Zhang, Gaiping;Zhang, Gaiping;Shi, Xibao;Zhang, Gaiping
关键词:IFN-gamma-inducible protein 16; interferon gene-stimulating protein; retinoic acid-inducible gene I; type I interferon
-
Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity
作者:Liu, Yingqi;Qin, Yidan;Yang, Bingbing;Zheng, Hongmei;Luo, Zhong;Qiao, Songlin;Li, Rui
关键词:PRV; NMHC-IIA; innate immunity; cGAS; PARP1; DNA recognition
-
In Vitro Protective Effect of Pea-Derived Peptides (PPs) via the Keap1/Nrf2 Signaling Pathway on Alpha-Gliadin-Sensitizing Peptide Induced Cacao-2 Cells
作者:Gao, Bing;Yan, Fang;Wang, Chunfeng;Cui, Chenxu;Sun, Xuefeng;Wang, Fangyu;Li, Ning
关键词:antioxidant enzymes; celiac disease; free radicals scavenging; alpha-gliadin peptide; Keap1/Nrf2 pathway
-
A universal design of restructured dimer antigens: Development of a superior vaccine against the paramyxovirus in transgenic rice
作者:Ma, Fanshu;Zhang, Longxian;Zhang, Erqin;Zhang, Gaiping;Ma, Fanshu;Zhang, Gaiping;Ma, Fanshu;Zhang, Gaiping;Ma, Fanshu;Zhang, Gaiping;Ma, Fanshu;Xu, Qianru;Yang, Daichang;Li, Qingmei;Guo, Junqing;Li, Rui;Wang, Li;Wang, Yanan;Zhao, Xiangyue;Chai, Shujun;Yin, Heng;Li, Kunpeng;Rao, Zihe;Rao, Zihe;Rao, Zihe
关键词:structural vaccine; transgenic rice; BCR; paramyxovirus
-
Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2
作者:Li, Ruiqi;Chang, Zejie;Cheng, Anchun;Zhang, Gaiping;Li, Ruiqi;Zhang, Gaiping;Li, Ruiqi;Zhang, Gaiping;Li, Ruiqi;Chang, Zejie;Wang, Yanan;Li, Minghui;Chen, Yilan;Fan, Lu;Wang, Siqiao;Sun, Xueke;Liu, Siyuan;Zhang, Gaiping;Chang, Zejie;Wang, Yanan;Li, Minghui;Sun, Xueke;Liu, Siyuan;Zhang, Gaiping;Liu, Hongliang;Ding, Peiyang;Zhang, Gaiping
关键词:COVID-19; Coronavirus; SARS-CoV-2; Nanoparticle; Subunit vaccine; Variants