A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt
文献类型: 外文期刊
作者: Zou, Niexia 1 ; Zhou, Dengbo 2 ; Chen, Yinglong 3 ; Lin, Ping 1 ; Chen, Yufeng 2 ; Wang, Wei 2 ; Xie, Jianghui 2 ; Wang, 1 ;
作者机构: 1.Huaqiao Univ, Inst Hort Sci & Engn, Xiamen, Peoples R China
2.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Key Lab Biol & Genet Resources Trop Crops, Minist Agr, Haikou, Hainan, Peoples R China
3.Univ Western Australia, Sch Agr & Environm, UWA Inst Agr, Perth, WA, Australia
关键词: Streptomyces sp; banana fusarium wilt; antifungal mechanism; pot experiment; GC-MS; biocontrol
期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )
ISSN:
年卷期: 2021 年 12 卷
页码:
收录情况: SCI
摘要: Banana Fusarium wilt disease caused by Fusarium oxyspoum f. sp. cubense (Foc) seriously threatens the banana industry. Foc tropical race 4 (Foc TR4) can infect almost all banana cultivars. Compared with traditional physical and chemical practices, biocontrol strategy using beneficial microbes is considered as an environmentally sound option to manage fungal disease. In this study, a strain, H3-2, isolated from a non-infected banana orchard, exhibited high antifungal activity against Foc TR4. According to its morphological, physiological, and biochemical characteristics, the strain H3-2 was identified as Streptomyces sp. and convinced by the polymorphic phylogenic analysis of 16S rRNA sequences. Extracts of the strain H3-2 suppressed the growth and spore germination of Foc TR4 in vitro by destroying cell membrane integrity and mycelial ultrastructure. Notably, the strain and its extracts showed broad-spectrum antifungal activity against the selected seven fungal phytopathogens. Fourteen chemical compounds in the extracts were identified by gas chromatography-mass spectrometer (GC-MS), primarily phenolic compounds. Additional pot inoculation experiment demonstrated that the fermentation broth of the strain H3-2 promoted the growth of banana seedlings by efficiently inhibiting the spread of banana Fusarium wilt disease. This study demonstrated the potential application of the novel Streptomyces sp. H3-2 for the management of banana Fusarium wilt.
- 相关文献
作者其他论文 更多>>
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting
作者:Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Lu;Pan, Yongbo
关键词:Bacillus siamensis; Tomato fusarium wilt; Biological control; Whole genome sequencing
-
Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils
作者:Zang, Xiaoping;Yun, Tianyan;Wang, Lixia;Ding, Zheli;Eissa, Mamdouh A.;Jing, Tao;Liu, Yongxia;Xie, Jianghui;He, Yingdui;Zhan, Rulin;Ma, Weihong;Eissa, Mamdouh A.
关键词:modern irrigation; fertigation; nutritional value; economic benefit; soil nutrients
-
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
作者:Wang, Dongjiao;Wang, Wei;Zang, Shoujian;Qin, Liqian;Liang, Yanlan;Lin, Peixia;Su, Yachun;Que, Youxiong;Que, Youxiong
关键词:Disease resistance; Expression profile; Transcriptome analysis; WRKY transcription factors
-
In Vitro Propagation Technology for the Endangered Aquatic Species Nymphoides coronata
作者:Lin, Fei;Kang, Yong;Li, Yamei;Guo, Yuhua;Yang, Guangsui;Yin, Junmei;Tang, Fenling;Lin, Fei;Eissa, Mamdouh A.;Wang, Wei;Yin, Junmei;Eissa, Mamdouh A.
关键词:tissue culture; Nymphoides; plant growth regulators; 6-BA; IAA; NAA
-
Physiological and Transcriptional Characteristics of Banana Seedlings in Response to Nitrogen Deficiency Stress
作者:Zhao, Lei;Zhang, Bencheng;Zhao, Lei;Cai, Bingyu;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan;Zhao, Lei;Cai, Bingyu;Zhang, Xiaohan;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan
关键词:banana; nitrogen deficiency; photosynthetic parameters; transcription level; phytohormone
-
Taxonomic identification and antagonistic activity of Streptomyces luomodiensis sp. nov. against phytopathogenic fungi
作者:Qi, Dengfeng;Liu, Qiao;Zou, Liangping;Zhang, Miaoyi;Li, Kai;Zhao, Yankun;Chen, Yufeng;Feng, Junting;Zhou, Dengbo;Wei, Yongzan;Wang, Wei;Xie, Jianghui;Zhang, Lu
关键词:Streptomyces; novel species; antifungal activity; taxonomic identification; banana Fusarium disease; antagonistic mechanism



