Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV
文献类型: 外文期刊
作者: Xu, Sizhe 1 ; Xu, Xingang 1 ; Zhu, Qingzhen 2 ; Meng, Yang 1 ; Yang, Guijun 1 ; Feng, Haikuan 1 ; Yang, Min 1 ; Zhu, Qilei 1 ; Xue, Hanyu 1 ; Wang, Binbin 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Jiangsu Univ, Sch Agr Engn, Zhenjiang 212013, Peoples R China
关键词: UAV remote sensing; Leaf nitrogen content; Image fusion; Multiple features combination; Optimal feature variable; Machine learning; Rice
期刊名称:PRECISION AGRICULTURE ( 影响因子:6.2; 五年影响因子:6.2 )
ISSN: 1385-2256
年卷期: 2023 年
页码:
收录情况: SCI
摘要: Timely and accurately monitoring leaf nitrogen content (LNC) is essential for evaluating crop nutrition status. Currently, Unmanned Aerial Vehicles (UAV) imagery is becoming a potentially powerful tool of assessing crop nitrogen status in fields, but most of crop nitrogen estimates based on UAV remote sensing usually use single type imagery, the fusion information from different types of imagery has rarely been considered. In this study, the fusion images were firstly made from the simultaneously acquired digital RGB and multi-spectral images from UAV at three growth stages of rice, and then couple the selecting methods of optimal features with machine learning algorithms for the fusion images to estimate LNC in rice. Results showed that the combination with different types of features could improve the models' accuracy effectively, the combined inputs with bands, vegetation indices (VIs) and Grey Level Co-occurrence Matrices (GLCMs) have the better performance. The LNC estimation of using fusion images was improved more obviously than multispectral those, and there was the best estimation at jointing stage based on Lasso Regression (LR), with R-2 of 0.66 and RMSE of 11.96%. Gaussian Process Regression (GPR) algorithm used in combination with one feature-screening method of Minimum Redundancy Maximum Correlation (mRMR) for the fusion images, showed the better improvement to LNC estimation, with R-2 of 0.68 and RMSE of 11.45%. It indicates that the information fusion from UAV multi-sensor imagery can significantly improve crop LNC estimates and the combination with multiple types of features also has a great potential for evaluating LNC in crops.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



