Maize Stem Contour Extraction and Diameter Measurement Based on Adaptive Threshold Segmentation in Field Conditions
文献类型: 外文期刊
作者: Zhou, Jing 1 ; Wu, Yushan 1 ; Chen, Jian 2 ; Cui, Mingren 1 ; Gao, Yudi 1 ; Meng, Keying 1 ; Wu, Min 1 ; Guo, Xinyu 3 ; Wen, Weiliang 3 ;
作者机构: 1.Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Peoples R China
2.Changchun Elringklinger Ltd, Changchun 130033, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
关键词: maize; contour extraction; stem diameter; Otsu
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.6; 五年影响因子:3.6 )
ISSN:
年卷期: 2023 年 13 卷 3 期
页码:
收录情况: SCI
摘要: Solving the problem of the stem contour extraction of maize is difficult under open field conditions, and the stem diameter cannot be measured quickly and nondestructively. In this paper, maize at the small and large bell stages was the object of study. An adaptive threshold segmentation algorithm based on the color space model was proposed to obtain the stem contour and stem diameter of maize in the field. Firstly, 2D images of the maize stem in the field were captured with an RGB-D camera. Then, the images were processed by hue saturation value (HSV) color space. Next, the stem contour of the maize was extracted by maximum between-class variance (Otsu). Finally, the reference method was used to obtain the stem diameter of the maize. Scatter plots and Dice coefficients were used to compare the contour extraction effects of the HSV + fixed threshold algorithm, the HSV + Otsu algorithm, and the HSV + K-means algorithm. The results showed that the HSV + Otsu algorithm is the optimal choice for extracting the maize stem contour. The mean absolute error, mean absolute percentage error (MAPE), and root mean square error (RMSE) of the maize stem diameter at the small bell stage were 4.30 mm, 10.76%, and 5.29 mm, respectively. The mean absolute error, MAPE, and RMSE of the stem diameter of the maize at the large bell stage were 4.78 mm, 12.82%, and 5.48 mm, respectively. The MAPE was within 10-20%. The results showed that the HSV + Otsu algorithm could meet the requirements for stem diameter measurement and provide a reference for the acquisition of maize phenotypic parameters in the field. In the meantime, the acquisition of maize phenotypic parameters under open field conditions provides technical and data support for precision farming and plant breeding.
- 相关文献
作者其他论文 更多>>
-
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
作者:Gu, Wenxuan;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Lu, Xianju;Guo, Xinyu;Wen, Weiliang;Wu, Sheng;Zheng, Chenxi;Lu, Xianju;Chang, Wushuai;Xiao, Pengliang;Guo, Xinyu
关键词:wheat; plant architecture; three-dimensional reconstruction; virtual design; plant phenotyping
-
Automatic acquisition, analysis and wilting measurement of cotton 3D phenotype based on point cloud
作者:Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Wu, Sheng;Li, Yuankun;Wen, Weiliang;Zhuang, Lvhan;Guo, Xinyu;Hao, Haoyuan;Zhuang, Lvhan;Xu, Longqin;Li, Hongxin;Liu, Shuangyin;Li, Yuankun;Zhang, Yongjiang
关键词:Phenotypic analysis; Deep learning; Leaf wilting; Multi-view
-
Maize emergence rate and leaf emergence speed estimation via image detection under field rail-based phenotyping platform
作者:Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Wang, Chuanyu;Hao, Haoyuan;Guo, Xinyu;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin;Zhuang, Lvhan;Hao, Haoyuan;Li, Jinhui;Xu, Longqin;Liu, Shuangyin
关键词:Field rail-based phenotyping platform; Emergence rate; Leaf emergence speed; Faster R-CNN; Mask R-CNN
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Using high-throughput phenotyping platform MVS-Pheno to decipher the genetic architecture of plant spatial geometric 3D phenotypes for maize
作者:Wu, Sheng;Zhang, Ying;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Guo, Minkun;Guo, Xinyu;Zhao, Jiuran;Zhao, Chunjiang;Wu, Sheng;Zhang, Ying;Wen, Weiliang;Wang, Chuanyu;Lu, Xianju;Guo, Minkun;Guo, Xinyu;Zhao, Chunjiang;Zhao, Yanxin;Zhao, Jiuran
关键词:Maize; Plant architecture; 3D phenotypes; Genome-wide association study
-
Method for the real-time detection of tomato ripeness using a phenotype robot and RP-YolactEdge
作者:Wang, Yuanqiao;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Fan, Jiangchuan;Wen, Weiliang;Lu, Xianju;Zhao, Chunjiang;Wang, Yuanqiao;Gou, Wenbo;Wang, Chuanyu;Wen, Weiliang;Lu, Xianju;Guo, Xinyu;Fan, Jiangchuan
关键词:instance segmentation; phenotype robot; tomato; greenhouse-based plant phenotyping; ripeness detection
-
Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence
作者:Wu, Yandong;Xiao, Pengliang;Huang, Linsheng;Wu, Yandong;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Xiao, Pengliang;Guo, Xinyu;Wen, Weiliang;Gu, Shenghao;Huang, Guanmin;Wang, Chuanyu;Lu, Xianju;Guo, Xinyu;Huang, Guanmin;Lu, Xianju
关键词: