Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW-LSTM Combination Method and MODIS Time Series Data
文献类型: 外文期刊
作者: Zhao, Fa 1 ; Yang, Guijun 1 ; Yang, Hao 1 ; Zhu, Yaohui 1 ; Meng, Yang 1 ; Han, Shaoyu 1 ; Bu, Xinlei 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Anhui Univ, Sch Elect & Informat Engn, Hefei 230601, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
关键词: normalized difference vegetation index (NDVI); prediction; dynamic time warping (DTW); LSTM; MODIS
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2021 年 13 卷 22 期
页码:
收录情况: SCI
摘要: The normalized difference vegetation index (NDVI) is an important agricultural parameter that is closely correlated with crop growth. In this study, a novel method combining the dynamic time warping (DTW) model and the long short-term memory (LSTM) deep recurrent neural network model was developed to predict the short and medium-term winter wheat NDVI. LSTM is well-suited for modelling long-term dependencies, but this method may be susceptible to overfitting. In contrast, DTW possesses good predictive ability and is less susceptible to overfitting. Therefore, by utilizing the combination of these two models, the prediction error caused by overfitting is reduced, thus improving the final prediction accuracy. The combined method proposed here utilizes the historical MODIS time series data with an 8-day time resolution from 2015 to 2020. First, fast Fourier transform (FFT) is used to decompose the time series into two parts. The first part reflects the inter-annual and seasonal variation characteristics of winter wheat NDVI, and the DTW model is applied for prediction. The second part reflects the short-term change characteristics of winter wheat NDVI, and the LSTM model is applied for prediction. Next, the results from both models are combined to produce a final prediction. A case study in Hebei Province that predicts the NDVI of winter wheat at five prediction horizons in the future indicates that the DTW-LSTM model proposed here outperforms the LSTM model according to multiple evaluation indicators. The results of this study suggest that the DTW-LSTM model is highly promising for short and medium-term NDVI prediction.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity



