Parental drought priming enhances tolerance to low temperature in wheat (Triticum aestivum) offspring
文献类型: 外文期刊
作者: Guo, Junhong 1 ; Wang, Hongyan 2 ; Liu, Shengqun 1 ; Wang, Yongjun 3 ; Liu, Fulai 4 ; Li, Xiangnan 1 ;
作者机构: 1.Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
2.Liaoning Univ, Sch Life Sci, Lab Plant Epigenet & Evolut, Shenyang 110036, Peoples R China
3.Jilin Acad Agr Sci, Inst Agr Resources & Environm, State Engn Lab Maize, Changchun 130033, Peoples R China
4.Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, Hojbakkegard 13, DK-2630 Tastrup, Denmark
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Chinese Acad Sci, CAS Engn Lab Ecoagr Water Source Liaoheyuan, Changchun 130102, Peoples R China
关键词: antioxidant capacity; carbohydrate metabolism; drought priming; low temperature; osmotic adjustment; photosynthesis; transgenerational effects; Triticum aestivum
期刊名称:FUNCTIONAL PLANT BIOLOGY ( 影响因子:2.812; 五年影响因子:3.291 )
ISSN: 1445-4408
年卷期:
页码:
收录情况: SCI
摘要: Low temperature is one of the major environmental stresses that limit crop growth and grain yield in wheat (Triticum aestivum L.). Drought priming at the vegetative stage could enhance wheat tolerance to later cold stress; however, the transgenerational effects of drought priming on wheat offspring's cold stress tolerance remains unclear. Here, the low temperature responses of offspring were tested after the parental drought priming treatment at grain filling stage. The offspring plants from parental drought priming treatment had a higher abscisic acid (ABA) level and lower osmotic potential (Psi o) than the control plants under cold conditions. Moreover, parental drought priming increased the antioxidant enzyme activities and decreased hydrogen peroxide (H2O2) accumulation in offspring. In comparison to control plants, parental drought priming plants had a higher ATP concentration and higher activities of ATPase and the enzymes involved in sucrose biosynthesis and starch metabolism. The results indicated that parental drought priming induced low temperature tolerance in offspring by regulating endogenous ABA levels and maintaining the redox homeostasis and the balance of carbohydrate metabolism, which provided a potential approach for cold resistant cultivation in wheat.
- 相关文献
作者其他论文 更多>>
-
Intercropping outweighs straw incorporation driving community and functional diversity of microarthropods after 5 years of tillage practices
作者:Liu, Yuhang;Gao, Qiang;Sun, Xin;Wang, Bin;Sun, Xin;Liu, Yuhang;Wang, Yongjun;Yao, Fanyun;Wang, Bin;Sun, Xin;Wu, Haitao;Sun, Xin
关键词:Maize-peanut intercropping; Microarthropods; Straw incorporation; Sustainable agriculture
-
Leveraging cover crop functional traits and nitrogen synchronization for yield-optimized waxy corn production systems
作者:Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Sun, Mengjing;Zhang, Long;Zhou, Jiangkuo;Liu, Ziping;Peng, Cong;Jia, Zechen;Lv, Yanjie;Wang, Yongjun
关键词:waxy corn; cover crop; yield; nitrogen use efficiency; path analysis
-
Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses
作者:Meng, Xiangzeng;Wang, Lichun;Wang, Yongjun;Meng, Xiangzeng;Cao, Yujun;Lv, Yanjie;Wang, Lichun;Wang, Yongjun
关键词:
-
The effects of a combination of maize/peanut intercropping and residue return on soil microbial nutrient limitation in maize fields
作者:Yao, Fanyun;Cao, Yujun;Liang, Jie;Liu, Xiaodan;Liu, Zhiming;Lv, Yanjie;Wei, Wenwen;Xu, Wenhua;Wang, Yongjun;Qi, Wei;Wang, Yongjun;Yu, Yang;Li, Xiang;Feng, Jian
关键词:Soil nutrients; Microbial biomass; Extracellular enzymes; C:N:P stoichiometry; Nutrient limitation
-
Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress
作者:Meng, Xiangzeng;Chen, Denglong;Wang, Yongjun;Wang, Lichun;Meng, Xiangzeng;Chen, Denglong;Lv, Yanjie;Xu, Wenhua;Wang, Yongjun;Wang, Lichun
关键词:Seed germination; Abiotic stress; Antioxidant enzyme; Metabolomic; Glycolysis
-
Elimination of Intraspecific Competition Does Not Improve Maize Leaf Physiological and Biochemical Responses to Topsoil Degradation
作者:Zhang, Shan;Jia, Zechen;Lv, Yanjie;Wang, Yongjun;Zhang, Shan;Guo, Zhongxiao;Lv, Yanjie;Wang, Yongjun;Zhang, Xiaolong;Liu, Kaichang
关键词:topsoil depth; maize planting density; intraspecific competition; nitrogen metabolism enzymes; photosynthesis enzymes; yield variability
-
Increased topsoil depth required to support increased grain yield production in high density maize
作者:Zhang, Xiaolong;Kong, Yuanyuan;Shao, Xiwen;Geng, Yanqiu;Wang, Lichun;Wang, Yongjun;Zhang, Xiaolong;Kong, Yuanyuan;Lv, Yanjie;Yao, Fanyun;Cao, Yujun;Wang, Lichun;Wang, Yongjun
关键词:Grain yield; Harvest index; Root characteristics; Leaf area index; Net photosynthetic rate



