ESTIMATION OF LEAF AREA INDEX OF WINTER WHEAT BASED ON HYPERSPECTRAL DATA OF UNMANNED AERIAL VEHICLES
文献类型: 外文期刊
作者: Chen, Riqiang 1 ; Feng, Haikuan 2 ; Yang, Fuqin 5 ; Li, Changchun 1 ; Yang, Guijun 2 ; Pei, Haojie 1 ; Pan, Li 2 ; Chen, Peng 1 ;
作者机构: 1.Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Henan, Peoples R China
2.Minist Agr, Key Lab Quantitat Remote Sensing Agr, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Beijing Engn Res Ctr Agr Internet Things, Beijing 100097, Peoples R China
5.Henan Inst Engn, Coll Civil Engn, Zhengzhou 451191, Henan, Peoples R China
6.Liaoning Tech Univ, Sch Geomat, Fuxing 123000, Peoples R China
关键词: Winter wheat; UAV remote sensing; Hyperspectral images; Leaf area index; Optimal Index
期刊名称:2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)
ISSN: 2153-6996
年卷期: 2019 年
页码:
收录情况: SCI
摘要: Rapid and accurate estimation of the winter wheat leaf area index (LAI) is important for evaluating its growth and estimating yield. In this paper, Optimal Index (0I) was used to screen the best combination of hyperspectral bands in the flag stage and flowering period of wheat, and the LAI estimation model was constructed by Partial Least Square (PLS). The main results are as follows: The LAI estimation model based on the 614-774-794nm band combination is the best model for winter wheat flag stage (R-2=0.485, RMSE=1.192, =0.682, RMSEv=1.210); The LAI estimation model constructed by the 454-754-834nm band combination is the best model for winter wheat flowering (R-2=0.702, RMSE=0.665, Mr= 0.810, RMSEv=0.468). The results show that it is feasible to use the optimal band combination as an independent variable to estimate the leaf area index of winter wheat, which can be used as a new method to monitor the growth of wheat.
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
A fast and lightweight detection model for wheat fusarium head blight spikes in natural environments
作者:Gao, Chunfeng;Guo, Wei;Gong, Zheng;Yue, Jibo;Fu, Yuanyuan;Yang, Chenghai;Feng, Haikuan
关键词:Deep learning; YOLOv5s; Fusarium head blight; Real -time detection; Lightweight architecture
-
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
作者:Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Yang, Xiaodong;Meng, Yang;Jiang, Xiangtai;Xue, Hanyu
关键词:different varieties of grapes; leaf chlorophyll content; hyperspectral remote sensing; data-processing; RFR
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass