Identifying key factors influencing maize stalk lodging resistance through wind tunnel simulations with machine learning algorithms
文献类型: 外文期刊
作者: Huang, Guanmin 1 ; Zhang, Ying 1 ; Gu, Shenghao 1 ; Wen, Weiliang 1 ; Lu, Xianju 1 ; Guo, Xinyu 1 ;
作者机构: 1.China Natl Engn Res Ctr Informat Technol Agr, Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
关键词: Maize; Stalk lodging; Wind tunnel testing; Machine learning algorithms; Indicator identification
期刊名称:ARTIFICIAL INTELLIGENCE IN AGRICULTURE ( 影响因子:12.4; 五年影响因子:12.7 )
ISSN: 2097-2113
年卷期: 2025 年 15 卷 2 期
页码:
收录情况: SCI
摘要: Climate change has intensified maize stalk lodging, severely impacting global maize production. While numerous traits influence stalk lodging resistance, their relative importance remains unclear, hindering breeding efforts. This study introduces an combining wind tunnel testing with machine learning algorithms to quantitatively evaluate stalk lodging resistance traits. Through extensive field experiments and literature review, we identified and measured 74 phenotypic traits encompassing plant morphology, biomass, and anatomical characteristics in maize plants. Correlation analysis revealed a median linear correlation coefficient of 0.497 among these traits, with 15.1 % of correlations exceeding 0.8. Principal component analysis showed that the first five components explained 90 % of the total variance, indicating significant trait interactions. Through feature engineering and gradient boosting regression, we developed a high-precision wind speed-ear displacement prediction model (R2 = 0.93) and identified 29 key traits critical for stalk lodging resistance. Sensitivity analysis revealed plant height as the most influential factor (sensitivity coefficient: -3.87), followed by traits of the 7th internode including epidermis layer thickness (0.62), pith area (-0.60), and lignin content (0.35). Our methodological framework not only provides quantitative insights into maize stalk lodging resistance mechanisms but also establishes a systematic approach for trait evaluation. The findings offer practical guidance for breeding programs focused on enhancing stalk lodging resistance and yield stability under climate change conditions, with potential applications in agronomic practice optimization and breeding strategy development. (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Three-Dimensional Time-Series Monitoring of Maize Canopy Structure Using Rail-Driven Plant Phenotyping Platform in Field
作者:Ma, Hanyu;Zhang, Dongsheng;Wen, Weiliang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Gou, Wenbo;Liang, Yuqiang;Zhang, Minggang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu
关键词:maize canopy; time-series phenotype; 3D point cloud; plot segmentation; marginal effect
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture
-
Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods
作者:Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhao, Yanxin;Song, Wei
关键词:maize; hybrids; stomatal phenotypes; high-throughput acquisition; deep learning



