您好,欢迎访问广东省农业科学院 机构知识库!

Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping

文献类型: 外文期刊

作者: Raghavan, Chitra 1 ; Naredo, Ma. Elizabeth B. 2 ; Wang, Hehe 2 ; Atienza, Genelou 2 ; Liu, Bin 2 ; Qiu, Fulin 3 ; McNa 1 ;

作者机构: 1.DAPO, Entomol & Plant Pathol Div, Int Rice Res Inst, Manila, Philippines

2.DAPO, Entomol & Plant Pathol Div, Int Rice Res Inst, Manila, Philippines; DAPO, Genet Resources Ctr, Int Rice Res Inst, Manila, Philippines; Guangdong Acad Agr Sci, Rice Res Inst, Guangzhou 510640, Peoples R China

3.DAPO, Entomol & Plant Pathol Div, Int Rice Res Inst, Manila, Philippines; DAPO, Genet Reso

关键词: agarose;rice

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: TILLING (Targeting Induced Local Lesions IN Genomes) exploits the fact that CEL I endonuclease cleaves heteroduplexes at positions of single nucleotide or small indel mismatches. To detect single nucleotide polymorphisms (SNPs) across a population, DNA pools are created and a target locus under query is PCR-amplified and subjected to heteroduplex formation, followed by CEL I cleavage. Currently, the common method used to detect cleaved products is by polyacrylamide gel electrophoresis using a high-throughput genotyping platform. Exact SNPs are then determined by sequencing. We sought to simplify the detection of CEL I-cleaved products on conventional agarose gels to make the technique more accessible to collaborating partners in developing countries where access to instrumentation could be limiting. Here, we used a panel of stress-related genes to evaluate SNP detection across 48 rice genotypes by contrasting them individually against IR64 and Nipponbare. SNP detection calls corresponded perfectly with those obtained from the Li-Cor genotypers. We were able to detect SNPs in pools of eight DNA templates, suggesting that the agarose gel system could be used to screen for SNPs with comparable throughput as that of the Li-Cor genotypers and showed that the throughput can be increased by analyzing larger amplicons (~3 kb). The agarose method offers a significant advantage by alleviating the need for labeled primers. We further demonstrated that the agarose method can be effectively used in gene mapping, an application particularly useful for parental lines with low levels of polymorphism. The lower cost and simplicity of the technique make it possible for broader applications of SNP-based markers for germplasm characterization and mapping studies.

  • 相关文献

[1]ESTABLISHMENT AND APPLICATION OF A SET OFBLAST IN RICE. Li Xiaofang,Luo Wenyong,Xiao Xin,Mao Xingxue,Liu Yanzhuo. 2001

[2]Disruption of Secondary Wall Cellulose Biosynthesis Alters Cadmium Translocation and Tolerance in Rice Plants. Song, Xue-Qin,Liu, Li-Feng,Zhang, Bao-Cai,Gao, Ya-Ping,Liu, Xiang-Ling,Zhou, Yi-Hua,Jiang, Yi-Jun,Lin, Qing-Shan,Ling, Hong-Qing. 2013

[3]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[4]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

[5]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[6]Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. Zhong, XH,Peng, SB,Sanico, AL,Liu, HX. 2003

[7]OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Chen, X.. 2009

[8]Development of elite restoring lines by integrating blast resistance and low amylose content using MAS. Xiao Wu-ming,Peng Xin,Luo Li-xin,Liang Ke-qin,Wang Jia-feng,Huang Ming,Liu Yong-zhu,Guo Tao,Luo Wen-long,Wang Hui,Chen Zhi-qiang,Yang Qi-yun,Zhu Xiao-yuan. 2018

[9]Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Hu, Ruifa,Cao, Jianmin,Huang, Jikun,Peng, Shaobing,Huang, Jianliang,Zhong, Xuhua,Zou, Yingbin,Yang, Jianchang,Buresh, Roland J.. 2007

[10]Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Li, Xiao-Fang,Liu, Zhi-Xia,Lu, Dong-Bo,Liu, Yan-Zhuo,Mao, Xing-Xue,Li, Xiao-Fang,Li, Zhi-Xin,Li, Xiao-Fang,Li, Hua-Jun. 2013

[11]A novel functional gene associated with cold tolerance at the seedling stage in rice. Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin,Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin. 2017

[12]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[13]Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. Wang, Kai,Cui, Kehui,Liu, Guoling,Xie, Weibo,Yu, Huihui,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Wang, Kai,Cui, Kehui,Liu, Guoling,Pan, Junfeng,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Pan, Junfeng,Shah, Farooq. 2014

[14]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

[15]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[16]Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.). Zhang, Yuexiong,Shan, Zelin,Qiao, Weihua,Xie, Qingjun,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Ding, Xiaohua,Zhang, Guiquan,Yang, Jianyuan,Chen, Shen,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Zhang, Guiquan. 2012

[17]Design and test of operation parameters for rice air broadcasting by unmanned aerial vehicle. Li Jiyu,Lan Yubin,Zhou Zhiyan,Zeng Shan,Huang Cong,Yao Weixiang,Li Jiyu,Lan Yubin,Zhou Zhiyan,Zeng Shan,Huang Cong,Yao Weixiang,Zhang Yang,Zhu Qiuyang. 2016

[18]SPECIATION OF ARSENIC IN RICE BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-HYDRIDE GENERATION-ATOMIC FLUORESCENCE SPECTROMETRY WITH MICROWAVE-ASSISTED EXTRACTION. Dai, Shouhui,Wang, Min,Mao, Xuefei,Huang, Yatao,Yang, Hui,Dai, Shouhui,Wang, Min,Mao, Xuefei,Huang, Yatao,Yang, Hui,Wang, Fuhua,Yang, Hui,Wang, Fuhua. 2014

[19]A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O-rufipogon) and barnyard grass (Echinochloa crusgalli). Yuan, Qian-Hua,Shi, Lei,Qian, Qian,Liu, Wu-Ge,Kuang, Ba-Geng,Zeng, Da-Li,Liao, Yi-Long,Cao, Bin,Jia, Shi-Rong. 2006

[20]The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Liang, Guoqing,Sun, Jingwen,He, Ping,Zhou, Wei,Wang, Xiubin,He, Ping,Tang, Shuanhu,Yang, Shaohai.

作者其他论文 更多>>