您好,欢迎访问中国热带农业科学院 机构知识库!

Identification and characterization of genes related to the development of breast muscles in Pekin duck

文献类型: 外文期刊

作者: Xu, Tieshan 1 ; Huang, Wei 1 ; Zhang, Xiaohui 3 ; Ye, Baoguo 4 ; Zhou, Hanlin 2 ; Hou, Shuisheng 1 ;

作者机构: 1.Chinese Acad Agr Sci, State Key Lab Anim Nutr Sci, Inst Anim Sci, Beijing 100193, Peoples R China

2.Chinese Acad Trop Agr Sci, Trop Crops Genet Resources Res Inst, Danzhou 571737, Hainan, Peoples R China

3.Henan Univ Sci & Technol, Coll Anim Sci, Luoyang 471003, Henan, Peoples R China

4.Hainan Acad Agr Sci, Inst Anim Sci & Vet, Haikou 571100, Peoples R China

关键词: Pekin duck;Skeletal muscle;Suppression subtractive hybridization;Gene expression

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pekin Duck is world-famous for its fast growth, but its breast muscle development is later and breast muscle content is lower compared with other muscular ducks. Therefore, it is very important to discover the genetic mechanism between breast muscle development and relative gene expression in Pekin duck. In current study, the genes which have relationships with breast muscle development were identified by suppression subtractive hybridization. A total of 403 positive clones were sequenced and 257 unigenes were obtained. The expression of 23 genes were analyzed in the breast muscle of 2-, 4-, 6-, 8- week old Pekin ducks. The results showed that unknown clone A233, C83 and C99 showed descending tendency as age increased; KBTBD10, HSPA8, MYL1, ZFP622, MARCH4, Nexilin, FABP4 and MUSTN1 had high expression levels at 6 weeks old; WAC, NT5C3, HSP90AA1, MRPL33, KLF6, TSNAX, CDC42EP3, HSPA4, TRAK1, NR2F2, HAUS1 and IGF1 had high expression levels at 8 weeks and showed ascending tendency as age increased. Expression of these 23 genes were also analyzed in breast muscle, leg muscle, heart, kidney, liver, muscular stomach and sebum cutaneum in 4-8-week old Pekin duck and results showed that most of these genes had high expression in breast muscle, leg muscle and heart.

  • 相关文献

[1]Identification and Characterization of Genes Related to the Development of Skeletal Muscle in the Hainan Black Goat. Xu, Tie Shan,Zhou, Han Lin,Rung, Guang,Sun, Wei Ping,Zhang, Xiao Hui,Gu, Li Hong.

[2]Characterization of myostatin gene (MSTN) of Pekin duck and the association of its polymorphism with breast muscle traits. Xu, T. S.,Gu, L. H.,Liu, X. L.,Xu, T. S.,Xu, T. S.,Hou, S. S.,Zhang, X. H.,Ye, B. G.. 2013

[3]Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Li, Yajun,Fei, Xiaowen,Deng, Xiaodong,Fei, Xiaowen.

[4]Estimates of Genetic Parameters for Body Weight and Carcass Composition in Pekin Ducks. Huang Wei,Hou Shuisheng,Liu Xiaolin,Xu Tieshan,Ye Baoguo. 2011

[5]Estimates of Genetic Parameters for Body Weight and Carcass Composition in Pekin Ducks. Xu, T. S.,Huang, W.,Hou, S. S.,Xu, T. S.,Liu, X. L.,Xu, T. S.. 2011

[6]Identification of defense-related genes in banana roots infected by Fusarium oxysporum f. sp cubense tropical race 4. Li, Weiming,Wang, Wei,Hu, Yulin,Mo, Yiwei,Sun, Dequan,Shi, Shengyou,Xie, Jianghui,Li, Weiming,Ge, Xuejun,Wu, Wei.

[7]Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots. Fan, Wei,Fan, Wei,Chang, Wenjun,Liu, Xiwen,Zhang, Zhili,Zhang, Zhili,Xiao, Chuan,Yang, Jianli.

[8]Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Xu, Bi Yu,Su, Wei,Liu, Ju Hua,Wang, Jia Bao,Jin, Zhi Qiang.

[9]Expression Characters of IGF2 and IGFBP3 in Eight Tissues of Wuzhishan Pig. Hou Guanyu,Wang Dongjin,Zhou Hanlin,Zeng Hongpu,Guan Song,Ma Yuehui. 2011

[10]Transcript Profiling of Hevea brasiliensis during Latex Flow. Tian, Wei-Min. 2017

[11]Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. Zhu, Xiangfei,Wang, Aiping,Zhu, Shijiang,Zhang, Lubin,Zhang, Lubin. 2011

[12]Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Geng, Meng-Ting,Wang, Yun-Lin,Hu, Xin-Wen,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Wu, Xiao-Hui,Sun, Chong. 2017

[13]Emission of volatile esters and transcription of ethylene- and aroma-related genes during ripening of 'Pingxiangli' pear fruit (Pyrus ussuriensis Maxim). Li, Guopeng,Jia, Huijuan,Teng, Yuanwen,Li, Guopeng,Li, Jihua,Wang, Qiang,Zhang, Maojun. 2014

[14]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[15]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[16]Validation of Reference Genes for RT-qPCR Studies of Gene Expression in Preharvest and Postharvest Longan Fruits under Different Experimental Conditions. Wu, Jianyang,Zhang, Hongna,Liu, Liqin,Li, Weicai,Wei, Yongzan,Shi, Shengyou. 2016

[17]Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Hu, Wei,Xia, Zhiqiang,Yan, Yan,Ding, Zehong,Tie, Weiwei,Zou, Meiling,Wei, Yunxie,Lu, Cheng,Hou, Xiaowan,Wang, Wenquan,Peng, Ming,Wang, Lianzhe. 2015

[18]Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. Gebelin, Virginie,Argout, Xavier,Engchuan, Worrawat,Pitollat, Bertrand,Duan, Cuifang,Montoro, Pascal,Leclercq, Julie,Engchuan, Worrawat,Duan, Cuifang. 2012

[19]HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis ( para rubber tree). Liu, Shujin,Lan, Jixian,Zhou, Binhui,Qin, Yunxia,Xiao, Xiaohu,Yang, Jianghua,Gou, Jiqing,Qi, Jiyan,Huang, Yacheng,Tang, Chaorong,Liu, Shujin,Lan, Jixian,Zhou, Binhui,Huang, Yacheng,Zhou, Yihua,Gou, Jiqing.

[20]The p53-Bak apoptotic signaling axis plays an essential role in regulating differentiation of the ocular lens. Deng, M.,Ji, W.,Zhang, X.,Gong, L.,Hu, X.,Hu, W.,Xiao, L.,Li, D. W. -C.,Chen, P.,Liu, F.,Fu, S.,Tang, H.,Fu, Y.,Xiong, Z.,Hui, S.,Hu, X.,Hu, W.,Xiao, L.,Liu, W. -B.,Xiao, Y. -M.,Liu, S. -J.,Liu, Y.,Li, D. W. -C.,Zhang, L.,Sun, S.,Liu, J.,Li, D. W. -C..

作者其他论文 更多>>