您好,欢迎访问中国水产科学研究院 机构知识库!

Construction and comparative study of monovalent and multivalent DNA vaccines against Streptococcus iniae

文献类型: 外文期刊

作者: Sun, Yun 1 ; Hu, Yong-Hua 1 ; Liu, Chun-Sheng 3 ; Sun, Li 1 ;

作者机构: 1.Chinese Acad Sci, Inst Oceanol, Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China

2.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China

3.Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China

关键词: Streptococcus iniae;Paralichthys olivaceus;DNA vaccine;Cross-serotype protection

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Streptococcus iniae is an important fish pathogen with a broad host range that includes both marine and freshwater fish species. With an aim to develop effective vaccines against S. iniae, we in this study constructed three monovalent DNA vaccines, i.e., pSagF, pSagG, and pSagI, based on sagF, G, and I, which are components of the streptolysin S cluster. The immunoprotective potentials of these vaccines were examined in a model of Japanese flounder (Paralichthys olivaceus). The results showed that following intramuscular administration, the vaccine plasmids were transported to spleen, kidney, and liver, where the vaccine-encoding transgenes were expressed. Immunocolloidal gold electron microscopy detected production of the vaccine protein in fish vaccinated with each of the vaccine plasmids. Following lethal-dose S. iniae challenge, pSagF-, pSagG-, and pSagI-vaccinated fish exhibited relative percent of survival (RPS) rates of 78%, 65%, and 76% respectively. To examine whether multivalent vaccines composed of different combinations of monovalent vaccines would produce better protections, flounder were vaccinated with FG (pSagF plus pSagG), FI (pSagF plus pSagG), or FGI (pSagF plus pSagG and pSagI). Subsequent challenging study showed that the RPS rates of the fish vaccinated with the divalent and trivalent vaccines were 4%-17% and 13%-26% respectively higher than those of the fish vaccinated with the component monovalent vaccines. Furthermore, FGI exhibited a strong cross protection against both serotype I and serotype II S. iniae, apparently due to, as revealed by sequence analysis, the existence of highly conserved SagF, SagG, and SagI homologs in these serotypes. Immunological analysis showed that all vaccines induced (i) specific serum antibody production, (ii) enhanced complement-mediated bactericidal activity, and (iii) significant induction of a wide range of immune genes. However, the levels of gene expression and serum bactericidal activity induced by FGI were in general more potent than those induced by monovalent vaccines. Taken together, these results indicate that the DNA vaccines based on sagF, G, and I, especially when they are formulated as multivalent vaccines, are highly efficacious against S. iniae infection.

  • 相关文献

[1]A Streptococcus iniae DNA vaccine delivered by a live attenuated Edwardsiella tarda via natural infection induces cross-genus protection. Sun, Y.,Hu, Y-H.,Sun, L.,Sun, Y.,Liu, C-S.. 2012

[2]SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region. Sun, Yun,Sun, Li,Hu, Yong-hua,Sun, Yun,Xing, Ming-qing,Liu, Chun-sheng. 2013

[3]Identification and screening of effective protective antigens for channel catfish against Streptococcus iniae. Wang, Yajun,Wang, Erlong,He, Yang,Wang, Kaiyu,Yang, Qian,Wang, Jun,Geng, Yi,Ouyang, Ping,Lai, Weimin,Wang, Yajun,Wang, Kaiyu,Geng, Yi,Chen, Defang,Huang, Xiaoli. 2017

[4]Identification and expression analysis of fetuin B (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge. Li, Chao,Gao, Chengbin,Fu, Qiang,Chen, Jinghua,Su, Baofeng,Su, Baofeng.

[5]The involvement of cathepsin F gene (CTSF) in turbot (Scophthalmus maximus L.) mucosal immunity. Gao, Chengbin,Fu, Qiang,Song, Huanhuan,Zhou, Shun,Li, Chao,Tan, Fenghua,Su, Baofeng,Su, Baofeng,Fu, Qiang.

[6]Identification, characterization and expression analysis of TLR5 in the mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Liu, Fengqiao,Fu, Qiang,Gao, Chengbin,Li, Chao,Su, Baofeng,Shang, Mei,Su, Baofeng,Shang, Mei,Tan, Fenghua.

[7]BIRC7 gene in channel catfish (Ictalurus punctatus): Identification and expression analysis in response to Edwardsiella tarda, Streptococcus iniae and channel catfish Hemorrhage Reovirus. Li, Min,Wang, Qi-Long,Chen, Song-Lin,Sha, Zhen-Xia,Li, Min,Liu, Yang.

[8]Characterization and expression analysis of chitinase genes (CHIT1, CHIT2 and CHIT3) in turbot (Scophthalmus maximus L.) following bacterial challenge. Gao, Chengbin,Cai, Xin,Song, Huanhuan,Wang Wenqi,Li, Chao,Su, Baofeng,Su, Baofeng,Zhang, Yu.

[9]Genetic diversity in three Japanese flounder (Paralichthys olivaceus) populations revealed by ISSR markers. Liu, YG,Chen, SL,Li, J,Li, BF. 2006

[10]Molecular identification and expression analysis of natural resistance associated macrophage protein (Nramp) cDNA from Japanese flounder (Paralichthys olivaceus). Chen, SL,Wang, ZJ,Xu, MY,Gui, JF. 2006

[11]MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Xu, Tian-jun,Chen, Song-lin,Ji, Xiang-shan,Tian, Yong-sheng,Xu, Tian-jun. 2008

[12]MHC class II alpha gene polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). Xu, Tian-jun,Chen, Song-lin,Zhang, Yu-xi,Xu, Tian-jun. 2010

[13]Genetic differentiation among common and selected hatchery populations of founder: Evidence from RAPD markers. Liu, Yun-Guo,Chen, Song-Lin,Li, Ba-Fang. 2007

[14]Phenotypic and genetic parameter estimation of morphological traits related to axial body growth in Japanese flounder. Liu, Yong-Xin,Jiang, Li,Liu, Hai-Jin,Yang, Run-Qing. 2014

[15]Assessing the genetic structure of three Japanese flounder (Paralichthys olivaceus) stocks by microsatellite markers. Liu, YG,Chen, SL,Li, BF. 2005

[16]A Genome Scan for Quantitative Trait Loci Associated with Vibrio anguillarum Infection Resistance in Japanese Flounder (Paralichthys olivaceus) by Bulked Segregant Analysis. Wang, Lei,Wang, Lei,Fan, Caixia,Liu, Yang,Zhang, Yingping,Deng, Han,Xu, Ying,Tian, Yongsheng,Liao, Xiaolin,Xie, Mingshu,Li, Wenlong,Chen, Songlin,Wang, Lei,Liu, Shoutang,Sun, Deqiang.

[17]Larval development and salinity tolerance of Japanese flounder (Paralichthys olivaceus) from hatching to juvenile settlement. Wang, Youji,Guo, Qindan,Zhao, Hu,Lu, Weiqun,Liu, Haijin.

[18]Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Li, Jie,Mo, Zhaolan,Li, Guiyang,Huang, Jie,Li, Jie,Mo, Zhaolan,Li, Guiyang,Huang, Jie,Xiao, Peng.

[19]Estimation of genetic parameters for growth related traits at different stages of development in Paralichthys olivaceus (Temminck & Schlegel, 1846). Liu, F.,Liu, F.,Chen, S. L.,Wang, L.,Zhang, Y. P.,Tian, Y. S.,Chen, H. L.,Liu, F.,Chen, S. L.,Wang, L.,Zhang, Y. P.,Tian, Y. S.,Chen, H. L.,Wang, L.,Chen, H. L..

[20]Cryopreservation of flounder (Paralichthys olivaceus) sperm with a practical methodology. Zhang, YZ,Zhang, SC,Liu, XZ,Xu, YY,Wang, CL,Sawant, MS,Li, J,Chen, SL.

作者其他论文 更多>>