您好,欢迎访问黑龙江省农业科学院 机构知识库!

Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture

文献类型: 外文期刊

作者: Wang, Jinli 1 ; Li, Xiaoliang 1 ; Zhang, Junling 1 ; Yao, Ting 1 ; Wei, Dan 2 ; Wang, Yufeng 2 ; Wang, Jingguo 1 ;

作者机构: 1.China Agr Univ, Coll Resources & Environm Sci, MOE Key Lab Plant Soil Interact, Beijing 100193, Peoples R China

2.Heilongjiang Acad Agr Sci, Inst Soil & Fertilizer, Harbin 150086, Peoples R China

关键词: Iso?avone;Soybean;Nitri?er;Arbuscular mycorrhizal fungi;Allechemical;Mono-cropping

期刊名称:PLANT ECOLOGY ( 影响因子:1.854; 五年影响因子:2.194 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soybean (Glycine max) agriculture is characterized by a high proportion of mono-cropping which results in reduced crop production in the Northeast China. Among all biotic and abiotic factors, changes in soil microbial communities induced by root activities, especially root exudates, might play an important role in these effects. The aim of the present study was to investigate response of microbial biomass and two major beneficial microbial functional groups, ammonia-oxidizing bacteria (AOB), and arbuscular mycorrhizal fungi (AMF), to root exudates in an experimental field under continuous soybean monoculture for 13 years. The results showed that microbial biomass carbon changed significantly with years of mono-cropping and correlated with concentrations of genistein (r = 0.4399, P < 0.001) and daidzein (r = 0.4082, P < 0.05) in the rhizosphere. However, root exudates had little effect on the nitrifier community, but reduced nitrification in the rhizosphere. In contrast, total AMF hyphal length was significantly stimulated by genistein (r = 0.5252, P < 0.01). There was a trend that AMF spore density increased in the rhizosphere with increasing years of mono-cropping, while AMF infection was constant over time, which might be attributed to competition between AMF and soil-borne fungal pathogens, as the results of stimulatory effect of flavonoids on fungal community, especially fungal pathogens. Our results suggested that the yield reduction in the beginning of continuous soybean monoculture could be partially attributed to nitrogen availability and yield stabilization after few years to stimulatory effects on AMF. These results imply that some of plant root exudates play a crucial role in changing the soil microbial community, and that underground ecosystem functioning is also affected by interactions among microbial functional groups.

  • 相关文献

[1]Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert. Zhang, Tao,Feng, Gu,Tian, ChangYan,Sun, Yu,Bai, DengSha. 2012

[2]On-site growth response of a desert ephemeral plant, Plantago minuta, to indigenous arbuscular mycorrhizal fungi in a central Asia desert. Zhang, Tao,Feng, Gu,Sun, Yu,Song, Yongchun,Tian, Changyan. 2011

[3]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[4]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[5]Cloning Na+/H+ Antiporter Gene (nhaA) and Analysis of Function in Soybean. Wang Quanwei,Chen Liang,Zhang Hailing. 2011

[6]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[7]Analysis of the APX Gene Expressed in Soybean Infected by Heterodera glycines and Coated with Biocontrol Bacteria Sneb545. Xiang, Peng,Li, Hongpeng,Lu, Wencheng,Li, Baohua,Xiang, Peng,Zhu, Feng,Chen, Jingsheng,Li, Hongpeng,Chen, Lijie,Duan, Yuxi,Chen, Jingsheng. 2016

[8]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[9]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

[10]The relation between C-4 pathway enzymes and PSII photochemical function in soybean. Li, WH,Lu, QT,Hao, NB,Ge, QY,Zhang, QD,Jiang, GM,Du, WG,Kuang, TY. 2000

[11]Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Zhang, Wen Bo,Xin, Da Wei,Chen, Qing Shan,Zhang, Wen Bo,Jiang, Hong Wei,Liu, Chun Yan,Hu, Guo Hua,Zhang, Wen Bo,Qiu, Peng Cheng,Li, Can Dong,Hu, Guo Hua.

[12]GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Wang, Fang,Chen, Hao-Wei,Li, Qing-Tian,Wei, Wei,Zhang, Wan-Ke,Ma, Biao,Zhang, Jin-Song,Chen, Shou-Yi,Li, Wei,Bi, Ying-Dong,Lai, Yong-Cai,Liu, Xin-Lei,Man, Wei-Qun.

[13]Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Wang, Yufeng,Li, Weiqun,Wang, Ying,Wei, Dan,Wang, Xiaojun,Chen, Xueli.

[14]Introduction of exogenous wild soybean DNA into cultivated soybean and RAPD molecular verification. XIE, WW,WANG, B,LEI, BJ,LI, XC,LU, CB,QIAN, H,ZHOU, SJ.

[15]Colonization of Clonostachys rosea on soybean root grown in media inoculated with Fusarium graminearum. Pan, F.,Xu, Y.,Xue, Allen G.,McLaughlin, Neil B.,Li, S.,Zhao, D.,Qu, H..

[16]Eplt4 Proteinaceous Elicitor Produced in Pichia pastoris Has a Protective Effect Against Cercosporidium sofinum Infections of Soybean Leaves. Wang, Yun,Song, Jinzhu,Wu, Yingjie,Odeph, Margaret,Liu, Zhihua,Yang, Ping,Yao, Lin,Zhao, Lei,Yang, Qian,Howlett, Barbara J.,Wang, Shuang.

[17]Progress in the Breeding of Soybean for High Photosynthetic Efficiency. Hao, NB,Du, WG,Ge, QY,Zhang, GR,Li, WH,Man, WQ,Peng, DC,Bai, KZ,Kuang, TY.

[18]Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Yang, Zhe,Xin, Dawei,Sun, Yanan,Qi, Zhaoming,Chen, Qingshan,Yang, Zhe,Jiang, Hongwei,Han, Xue,Yang, Zhe,Liu, Chunyan,Hu, Guohua.

[19]Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Gu, Yongzhe,Wang, Yan,Gao, Huihui,He, Chaoying,Gu, Yongzhe,Gao, Huihui,He, Chaoying,Li, Wei,Liu, Miao,Lai, Yongcai,Jiang, Hongwei,Chen, Qingshan.

[20]Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Fang, Chao,Ma, Yanming,Liu, Zhi,Wang, Zheng,Yang, Rui,Zhang, Min,Pan, Yi,Zhou, Guoan,Shen, Yanting,Liu, Shulin,Liu, Tengfei,Zhang, Jixiang,Zhu, Baoge,Tian, Zhixi,Wu, Shiwen,Yu, Hong,Qin, Hao,Yuan, Jia,Li, Jiayang,Wang, Guodong,Hu, Guanghui,Zhou, Zhengkui,Ren, Haixiang,Wang, Yanping,Du, Weiguang,Han, Dezhi,Yan, Hongrui,Yuan, Xiaohui,Kong, Fanjiang,Liu, Baohui,Zhang, Zhiwu,Fang, Chao,Liu, Zhi,Shen, Yanting,Liu, Shulin,Liu, Tengfei,Zhang, Jixiang,Wang, Guodong,Tian, Zhixi. 2017

作者其他论文 更多>>