您好,欢迎访问黑龙江省农业科学院 机构知识库!

Eplt4 Proteinaceous Elicitor Produced in Pichia pastoris Has a Protective Effect Against Cercosporidium sofinum Infections of Soybean Leaves

文献类型: 外文期刊

作者: Wang, Yun 1 ; Song, Jinzhu 1 ; Wu, Yingjie 1 ; Odeph, Margaret 1 ; Liu, Zhihua 1 ; Howlett, Barbara J. 2 ; Wang, Shuan 1 ;

作者机构: 1.Harbin Inst Technol, Dept Life Sci & Engn, Harbin 150001, Peoples R China

2.Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia

3.Heilongjiang Acad Agr Sci, Inst Soil Fertilizer & Environm Resources, Harbin, Peoples R China

关键词: EplT4 elicitor;Trichoderma asperellum;Pichia pastoris;Soybean;Induced;resistance

期刊名称:APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY ( 影响因子:2.926; 五年影响因子:2.685 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A complementary DNA library was constructed from the mycelium of Trichoderma asperellum T4, and a highly expressed gene fragment named EplT4 was found. In order to find a more efficient and cost-effective way of obtaining EplT4, this study attempted to produce EplT4 using a Pichia pastoris expression system. The gene encoding EplT4, with an additional 6-His tag at the C-terminus, was cloned into the yeast vector pPIC9K and expressed in the P. pastoris strain GS115 to obtaining more protein for the further research. Transformants of P. pastoris were selected by PCR analysis, and the ability to secrete high levels of the EplT4 protein was determined. The optimal conditions for induction were assayed using the shake flask method and an enzyme-linked immunosorbent assay. The yield of purified EplT4 was approximately 20 mg/L by nickel affinity chromatography and gel-filtration chromatography. Western blot and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis revealed that the recombinant EplT4 was expressed in both its monomers and dimers. Soybean leaves treated with the EplT4 monomer demonstrated the induction of glucanase, chitinase III-A, cysteine proteinase inhibitor, and peroxidase genes. Early cellular events in plant defense response were also observed after incubation with EplT4. Soybean leaves protected by EplT4 against the pathogen Cercosporidium sofinum (Hara) indicated that EplT4 produced in P. pastoris was biologically active and would be potentially useful for improving food security.

  • 相关文献

[1]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang. 2005

[2]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang,中国科学院文献情报中心; 中国生物技术发展中心; 中国生物工程学会;. 2005

[3]Effects on Trypsin Inhibitor in Roots of Resistant Soybeans after Heterodera glycines Invasion. Liu Dawei,Yang Shaoxu,Chen Lijie,Duan Yuxi,Chen Jingsheng. 2016

[4]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[5]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[6]Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Shi Xiaodi,Li Jingyan,Guo Shuntang,Wang Shuming,Zhang Lei,Qiu Lijuan,Han Tianfu,Wang Qianyu,Chang Sam Kow-Ching.

[7]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[8]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

[9]The relation between C-4 pathway enzymes and PSII photochemical function in soybean. Li, WH,Lu, QT,Hao, NB,Ge, QY,Zhang, QD,Jiang, GM,Du, WG,Kuang, TY. 2000

[10]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[11]Pathogenicity of Pythium species causing seed rot and damping-off in soybean under controlled conditions. Xue, Allen G.,Cober, Elroy R.,Babcock, Carolyn,Zhang, Jinxiu,Wei, Lai,Zhang, Shuzhen,Li, Wenbin,Wu, Junjiang,Liu, Lijun. 2010

[12]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[13]Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Gu, Yongzhe,Wang, Yan,Gao, Huihui,He, Chaoying,Gu, Yongzhe,Gao, Huihui,He, Chaoying,Li, Wei,Liu, Miao,Lai, Yongcai,Jiang, Hongwei,Chen, Qingshan.

[14]Detecting SNPs underlying domestication-related traits in soybean. Li, Ying-Hui,Ma, Yan-Song,Chang, Ru-Zhen,Qiu, Li-Juan,Reif, Jochen C.,Jackson, Scott A.,Ma, Yan-Song. 2014

[15]Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. Zhong, Chao,Sun, Suli,Duan, Canxing,Zhu, Zhendong,Yao, Liangliang,Ding, Junjie. 2018

[16]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[17]QTL analysis of soybean oil content under 17 environments. Qi, Zhaoming,Hou, Meng,Xin, Dawei,Wang, Zhongyu,Zhu, Rongsheng,Hu, Zhenbang,Chen, Qingshan,Han, Xue,Jiang, Hongwei,Liu, Chunyan,Hu, Guohua,Li, Candong. 2014

[18]Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Wu, X. X.,Li, J.,Wu, X. D.,Wang, Z. K.,Liu, S. S.,Li, S. N.,Ma, Y. L.,Zhao, L.,Li, H. Y.,Li, D. M.,Li, W. B.,Liu, Q.,Su, A. Y.,Sun, J.. 2016

[19]GmACP expression is decreased in GmNORK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei. 2016

[20]Construction and analysis of a suppression subtractive hybridization library of regeneration-related genes in soybean. Sun, J.,Li, J.,Liu, M.,Zhang, B. B.,Li, D. M.,Wang, M.,Zhang, C.,Li, W. B.,Wu, X. X.,Sun, J.,Su, A. Y.. 2015

作者其他论文 更多>>