您好,欢迎访问江苏省农业科学院 机构知识库!

Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease

文献类型: 外文期刊

作者: Liu, Xin 1 ; Yang, Lihua 1 ; Zhou, Xianyao 1 ; Zhou, Miaoping; Lu, Yan 1 ; Ma, Lingjian 3 ; Ma, Hongxiang; Zhang, Z 1 ;

作者机构: 1.Chinese Acad Agr Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Key Lab Biol & Genet Improvement Triticeae Crops, Agr Minist,Inst Crop Sci, Beijing 100081, Peoples R China

2.Northwest A&F Univ, Coll Agron, Yangling 712100, Peoples R China

3.Northwest A&F Univ, Coll Agron, Yangling 712100,

关键词: Gaeumannomyces graminis var. tritici;MYB transcription factor;take-all resistance;Thinopyrum intermedium;transformation;Triticum aestivum

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site c/s-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmedthat TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three T7MYB2R-7-overexpressing transgenic wheat lines. Furthermore, the transcript levels ofat least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  • 相关文献

[1]An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. Liu, Xin,Wang, Xindong,Zhou, Xianyao,Ye, Xingguo,Wei, Xuening,Zhou, Miaoping. 2012

[2]Sensitivity to silthiofam, tebuconazole and difenoconazole of Gaeumannomyces graminis var. tritici isolates from China. Yun, Yingzi,Yu, Fangwei,Yin, Yanni,Ma, Zhonghua,Wang, Ning,Chen, Huaigu.

[3]Analysis of simple sequence repeats in the Gaeumannomyces graminis var. tritici genome and the development of microsatellite markers. Li, Wei,Feng, Yanxia,Sun, Haiyan,Deng, Yuanyu,Chen, Huaigu,Feng, Yanxia,Yu, Hanshou. 2014

[4]GASTRODIA ANTI-FUNGAL PROTEIN ENHANCES FUSARIUM HEAD BLIGHT RESISTANCE IN TRANSGENIC WHEAT. Zhou, Miaoping,Yu, Guihong,Ren, Lijuan,Zhang, Xu,Lu, Weizhong,Ma, Hongxiang.

[5]Microscopic observations of strawberry plant colonization by a GFP-labelled strain of Fusarium oxysporum f. sp. fragariae. Yuan, Hongbo,Ling, Xitie,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Yao, Shu,Zhang, Baolong.

[6]Cloning and expression of a wild eggplant cytochrome P450 gene, StoCYP77A2, involved in plant resistance to Verticillium dahliae. Yang, Liu,Shi, Ce,Mu, Xiaoying,Liu, Chao,Shi, Ke,Zhu, Wenjiao,Yang, Qing,Yang, Liu.

[7]A new time-saving transformation system for Brassica napus. Kong, Fanming,Li, Juan,Tan, Xiaoli,Zhang, Lili,Zhang, Zhiyan,Ma, Xiaoke,Qi, Cunkou. 2009

[8]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[9]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[10]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

[11]Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. Shi, Gao Ling,Lou, Lai Qing,Li, Dao Jun,Hu, Zhu Bing,Cai, Qing Sheng,Shi, Gao Ling.

[12]Single-Strand Conformational Polymorphism Markers Associated with a Major QTL for Fusarium Head Blight Resistance in Wheat. Yu, G. H.,Tang, K. X.,Ma, H. X.,Bai, G. H..

[13]Selection and genetic improvement of pollen fertility restorer lines with Triticum timopheevii, cytoplasm in common wheat. Zhou, WC,Zhao, YH,Zou, ML,Wang, SW. 1999

[14]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[15]Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Cox, Thomas S.,Wu, Jizhong,Wang, Shuwen,Cai, Jin,Zhong, Qiaofeng,Fu, Bisheng,Cox, Thomas S.,Wang, Shuwen. 2017

[16]The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Yang, Kun,Wei, Xuening,Rong, Wei,Du, Lipu,Ye, Xingguo,Qi, Lin,Zhang, Zengyan,Zhang, Qiaofeng.

[17]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

作者其他论文 更多>>