您好,欢迎访问中国水产科学研究院 机构知识库!

Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress

文献类型: 外文期刊

作者: Mou, S. 1 ; Zhang, X. 1 ; Dong, M. 2 ; Fan, X. 1 ; Xu, J. 3 ; Cao, S. 2 ; Xu, D. 1 ; Wang, W. 2 ; Ye, N. 1 ;

作者机构: 1.Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China

2.Qingdao Agr Univ, Qingdao, Peoples R China

3.SOA, Inst Oceanog 1, Key Lab Marine Bioact Subst, Qingdao, Peoples R China

关键词: High light;LHCSR and PsbS proteins;photoprotection;Ulva prolifera.

期刊名称:PLANT BIOLOGY ( 影响因子:3.081; 五年影响因子:2.972 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ulva prolifera, an intertidal macroalga, has to adapt to wide variations in light intensity, making this species particularly rewarding for studying the evolution of photoprotective mechanisms. Intense light induced increased non-photochemical quenching (NPQ) and stimulated de-epoxidation of xanthophyll cycle components, while DTT-treated samples had lower NPQ capacity, indicating that the xanthophyll cycle must participate in photoprotection. In this work, we found that the PsbSrelated NPQ was maintained in U. prolifera. According to analysed gene expression, both LhcSR and psbS were up-regulated in high light, suggesting that these two genes are light-induced. LHCSR and PsbS proteins were present at different light intensities and accumulated under high light conditions, and PsbS concentrations were higher than LHCSR, showing that the NPQ mechanism of U. prolifera is more dependent on PsbS protein concentration. Moreover, the level of both LHCSR and PsbS proteins was high even in the darkness, and neither the transcript level nor protein content of LhcSR and psbS genes varied significantly following short-term exposure to intense light. These findings suggest that this alga can modulate NPQ levels through regulation of the xanthophyll cycle and concentrations of PsbS and/or LHCSR.

  • 相关文献

[1]Identification and expression analysis of four light harvesting-like (Lhc) genes associated with light and desiccation stress in Ulva linza. Guan, Zheng,Zhang, Xiaowen,Xu, Dong,Fan, Xiao,Wang, Yitao,Ye, Naihao,Mou, Shanli,Wang, Dongsheng,Ye, Naihao.

[2]Expression of Three Putative Early Light-Induced Genes Under Different Stress Conditions in the Green Alga Ulva linza. Zhang, Xiaowen,Mou, Shanli,Xu, Dong,Fan, Xiao,Ye, Naihao,Li, Youxun,Cao, Shaona,Mou, Shanli.

作者其他论文 更多>>