Physiological and transcriptional responses in the iron-sulphur cluster assembly pathway under abiotic stress in peach (Prunus persica L.) seedlings
文献类型: 外文期刊
作者: Song, Zhizhong 1 ; Yang, Yong 1 ; Xu, Jianlan 1 ; Ma, Ruijuan 1 ; Yu, Mingliang 1 ;
作者机构: 1.Jiangsu Acad Agr Sci, Inst Hort, Nanjing 210014, Peoples R China
关键词: Peach;Fe–S cluster assembly;genes;Iron homeostasis;Abiotic stress
期刊名称:PLANT CELL TISSUE AND ORGAN CULTURE ( 影响因子:2.711; 五年影响因子:2.73 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: As one of the most indispensable element in mineral nutrition of plants, iron (Fe) is closely related to fruits quality and yield. However, molecular mechanisms towards Fe metabolism in fruit trees is largely unclear. In higher plants, iron-sulphur (Fe-S) cluster assembly occurs in chloroplasts, mitochondria and cytosol involving dozens of genes. In this study, we identified 44 putative Fe-S cluster assembly genes in peach (Prunus persica cv. 'Xiahui6'), and analyzed Fe-S cluster assembly gene expression profiles in response to abiotic stresses. Peach seedlings were more sensitive to iron deficiency, drought and salinity stress, evidenced in reduced photosynthetic performance and altered activity of nitrite reductase, succinate dehydrogenase and aconitase. In addition, Fe-S cluster assembly genes are differentially regulated by abiotic stresses. Iron depletion and drought stress are likely to affect Fe-S cluster assembly genes in leaves. Excess iron toxicity mainly induces Fe-S cluster assembly gene expression in roots, whereas salinity stress massively inhibits Fe-S cluster assembly gene expression in roots. Interestingly, we found that un-functional scaffolds are more prone to disappear during the long-term evolution in perennial woody plants. Our findings directly provide molecular basis for Fe metabolism in peach, and favorably reveal potential candidate genes for further functional determination
- 相关文献
作者其他论文 更多>>
-
Effects of blooming and fruit thinning on the yield, fruit quality, and leaf photosynthesis of peach cultivar 'Xiahui 5' in China
作者:Zhang, Binbin;Chen, Hong;Zhang, Yuanyuan;Guo, Shaolei;Wang, Xiaojun;Sun, Meng;Yu, Mingliang;Ma, Ruijuan;Chen, Hong
关键词:Blossom and fruit thinning; fruit quality; fruit set; peach; photosynthesis; yield
-
Deciphering the Role of Waxy Gene Mutations in Enhancing Rice Grain Quality
作者:Yang, Yong;Zhou, Lihui;Feng, Linhao;Jiang, Jianying;Huang, Lichun;Liu, Qing;Zhang, Changquan;Liu, Qiaoquan;Yang, Yong;Feng, Linhao;Jiang, Jianying;Huang, Lichun;Zhang, Changquan;Liu, Qiaoquan;Zhou, Lihui;Zhang, Yadong;Liu, Qing
关键词:soft rice; low amylose; grain transparency; Wx; eating and cooking quality
-
Multi-omics analysis unravels chemical roadmap and genetic basis for peach fruit aroma improvement
作者:Cao, Xiangmei;Su, Yike;Cheng, Bo;Xie, Kaili;Klee, Harry;Chen, Kunsong;Zhang, Bo;Zhao, Ting;Guan, Xueying;Zhang, Yuanyuan;Yu, Mingliang;Zhang, Yuyan;Allan, Andrew;Zhang, Bo
关键词:
-
Effects of Different Mulching Practices on Soil Environment and Fruit Quality in Peach Orchards
作者:Guo, Lei;Wang, Falin;Liu, Siyu;Zhang, Peizhi;Hakeem, Abdul;Song, Hongfeng;Yu, Mingliang
关键词:peach orchards; living grass mulch; soil nutrients; microbial community; fruit quality
-
Genome-Wide Identification and Analysis of Plasma Membrane H+-ATPases Associated with Waterlogging in Prunus persica (L.) Batsch
作者:Zhang, Yuyan;Ma, Ruijuan;Yu, Mingliang;Xu, Jianlan;Guo, Shaolei;Zhang, Yuyan;Mao, Qinsi;Guo, Xin
关键词:peach; plasma membrane H+-ATPase family; genome-wide identification; waterlogging tolerance
-
Effects of paper pouches of different light transmittance on the phenolic synthesis and related gene expression in peach fruit
作者:Su, Ziwen;Yu, Mingliang;Su, Ziwen;Yan, Juan;Zhang, Binbin;Sun, Meng;Cai, Zhixiang;Shen, Zhijun;Ma, Ruijuan;Yu, Mingliang
关键词:Peach; Bagging; Light intensity; Phenolic compounds; Gene expression
-
Analysis of volatile compounds and metabolic mechanisms of stony hard peach after ethylene treatment
作者:Meng, Peiyu;Su, Ziwen;Yu, Mingliang;Shen, Zhijun;Zhang, Yuanyuan;Guo, Shaolei;Li, Shenge;Yu, Mingliang
关键词:Stony hard peach; Ethylene; Volatile compounds; Transcriptomic analysis