您好,欢迎访问江苏省农业科学院 机构知识库!

A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress

文献类型: 外文期刊

作者: Chen, Tianzi 1 ; Li, Wenjuan 1 ; Hu, Xuehong 2 ; Guo, Jiaru 2 ; Liu, Aimin 1 ; Zhang, Baolong 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Prov Key Lab Agrobiol, Nanjing 210014, Jiangsu, Peoples R China

2.Nanjing Agr Univ, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China

关键词: Drought stress;GbMYB5;Gossypium barbadense;Overexpression;Tolerance;Virus-induced gene silencing

期刊名称:PLANT AND CELL PHYSIOLOGY ( 影响因子:4.927; 五年影响因子:5.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco. Virus-induced gene silencing of GbMYB5 compromised the tolerance of cotton plantlets to drought stress and reduced the post-rewatering water recovery survival rate to 50% as compared with the 90% survival rate in the wild type (WT). Silencing GbMYB5 decreased proline content and antioxidant enzyme activities and increased malondialdehyde (MDA) content in cotton under drought stress. The expression levels of drought-inducible genes NCED3, RD22 and RD26 were not affected by the silencing of GbMYB5. However, GbMYB5-overexpressing tobacco lines displayed hypersensitivity to ABA and improved survival rates as well as reduced water loss rates under drought stress. Furthermore, stomatal size and the rate of opening of stomata were markedly decreased in transgenic tobacco. The overexpression of GbMYB5 enhanced the accumulation of proline and antioxidant enzymes while it reduced production of MDA in transgenic tobacco as compared with the WT under drought stress. The transcript levels of the antioxidant genes SOD, CAT and GST, polyamine biosynthesis genes ADC1 and SAMDC, the late embryogenesis abundant protein-encoding gene ERD10D and drought-responsive genes NCED3, BG and RD26 were generally higher in GbMYB5-overexpressing tobacco than in the WT under drought stress. Collectively, our data suggested that GbMYB5 was positively involved in the plant adaptive response to drought stress.

  • 相关文献

[1]A P4-ATPase Gene GbPATP of Cotton Confers Chilling Tolerance in Plants. Liu, Tingli,Guo, Shiwei,Lian, Ziyi,Chen, Fei,Yang, Yuwen,Chen, Tianzi,Ling, Xitie,Liu, Aiming,Zhang, Baolong,Wang, Rongfu.

[2]Characterization and expression profile of CaNAC2 pepper gene. Guo, Wei-Li,Chen, Ru-Gang,Yin, Yan-Xu,Gong, Zhen-Hui,Guo, Wei-Li,Chen, Bi-Hua,Du, Xiao-Hua,Zhang, Yu-Yuan,Wang, Shu-Bin. 2015

[3]Recent progress in drought and salt tolerance studies in Brassica crops. Zhang, Xuekun,Lu, Guangyuan,Long, Weihua,Zou, Xiling,Li, Feng,Long, Weihua,Nishio, Takeshi.

[4]ROLE OF THE NON-PROTEIN THIOLS IN ACCUMULATION, TRANSLOCATION AND TOLERANCE OF LEAD IN Iris lactea var. chinensis. Yuan, Hai-Yan,Huang, Su-Zhen,Yang, Yong-Heng,Gu, Chun-Sun,Yuan, Hai-Yan,Huang, Su-Zhen,Yang, Yong-Heng,Guo, Zhi.

[5]Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Fang, Zhigang,Hu, Zhaoyang,Zhao, Huihui,Yang, Lei,Lou, Laiqing,Cai, Qingsheng,Fang, Zhigang,Ding, Chenglong.

[6]Mercury toxicity, molecular response and tolerance in higher plants. Yang, Zhi Min,Chen, Jian. 2012

[7]Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta-analysis. Ma, Yuan-Chun,Ma, Yuan-Chun,Dong, Chao,Cheng, Zong-Ming (Max),Ma, Yuan-Chun,Auge, Robert M.,Cheng, Zong-Ming (Max). 2017

[8]Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Shen, W. J.,Chen, G. X.,Xu, J. G.,Jiang, Y.,Liu, L.,Gao, Z. P.,Ma, J.,Lv, C. F.,Chen, X.,Chen, T. H..

[9]Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba. He, Mei,Shi, Dawei,Wang, Tao,Xie, Yinfeng,He, Mei,Shi, Dawei,Wang, Tao,Xie, Yinfeng,He, Mei,Hu, Yuan,Wei, Xiaodong.

[10]Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Yu, Xiaqing,Wu, Zhen,Ottosen, Carl-Otto,Rosenqvist, Eva. 2017

作者其他论文 更多>>