您好,欢迎访问广东省农业科学院 机构知识库!

Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

文献类型: 外文期刊

作者: Zhuang, Li 1 ; Tang, Jia 1 ; Wang, Yueqiang 1 ; Hu, Min 1 ; Zhou, Shungui 1 ;

作者机构: 1.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Guangdong, Peoples R China

关键词: Methanogenic benzoate degradation;Iron oxides;Syntrophy;Direct interspecies electron transfer

期刊名称:JOURNAL OF HAZARDOUS MATERIALS ( 影响因子:10.588; 五年影响因子:10.129 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89-94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments. (C) 2015 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Enhanced nitrate reduction and current generation by Bacillus sp in the presence of iron oxides. Liu, Tongxu,Li, Fangbai,Zhang, Wei,Li, Xiaomin,Zhang, Wei. 2012

[2]Effect of oxalate and pH on photodegradation of pentachlorophenol in heterogeneous irradiated maghemite System. Lan, Qing,Cao, Meiyuan,Ye, Zhijun,Chen, Xuequan,Lan, Qing,Zhu, Jishu,Chen, Manjia,Liu, Chengshuai.

[3]Effect of iron oxides and carboxylic acids on photochemical degradation of bisphenol A. Li, Fang-bai,Chen, Jun-jian,Liu, Cheng-shuai,Dong, Jun,Liu, Tong-xu. 2006

[4]Effects of Al Content and Synthesis Temperature on Al-Substituted Fe Oxides: Crystal Properties and Fe(III) Bioaccessibility. Liu, Tongxu,Li, Xiaomin,Li, Fangbai,Tao, Liang,Liu, Hong.

[5]Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties. Liu, Tong-xu,Li, Xiao-min,Li, Fang-bai,Zhang, Wei,Chen, Man-jia,Zhou, Shun-gui.

作者其他论文 更多>>