您好,欢迎访问黑龙江省农业科学院 机构知识库!

GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants

文献类型: 外文期刊

作者: Wang, Fang 1 ; Chen, Hao-Wei 1 ; Li, Qing-Tian 1 ; Wei, Wei 1 ; Li, Wei 2 ; Zhang, Wan-Ke 1 ; Ma, Biao 1 ; Bi, Ying-Dong; 1 ;

作者机构: 1.Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Gen, Beijing 100101, Peoples R China

2.Heilongjiang Acad Agr Sci, Inst Crop Tillage & Cultivat, Harbin 150086, Heilongjiang, Peoples R China

3.Heilongjiang Acad Agr Sci,

关键词: soybean;transcription factor;stress tolerance;root

期刊名称:PLANT JOURNAL ( 2020影响因子:6.417; 五年影响因子:7.627 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soybean (Glycine max) is an important crop for oil and protein resources worldwide. The molecular mechanism of the abiotic stress response in soybean is largely unclear. We previously identified multiple stress-responsive WRKY genes from soybean. Here, we further characterized the roles of one of these genes, GmWRKY27, in abiotic stress tolerance using a transgenic hairy root assay. GmWRKY27 expression was increased by various abiotic stresses. Over-expression and RNAi analysis demonstrated that GmWRKY27 improves salt and drought tolerance in transgenic soybean hairy roots. Measurement of physiological parameters, including reactive oxygen species and proline contents, supported this conclusion. GmWRKY27 inhibits expression of a downstream gene GmNAC29 by binding to the W-boxes in its promoter region. The GmNAC29 is a negative factor of stress tolerance as indicated by the performance of transgenic hairy roots under stress. GmWRKY27 interacts with GmMYB174, which also suppresses GmNAC29 expression and enhances drought stress tolerance. The GmWRKY27 and GmMYB174 may have evolved to bind to neighbouring cis elements in the GmNAC29 promoter to co-reduce promoter activity and gene expression. Our study discloses a valuable mechanism in soybean for regulation of the stress response by two associated transcription factors. Manipulation of these genes should facilitate improvements in stress tolerance in soybean and other crops.

  • 相关文献

[1]Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress. Long, Ruicai,Zhang, Tiejun,Kang, Junmei,Cong, Lili,Gao, Yanli,Yang, Qingchuan,Li, Mingna,Sun, Yan,Liu, Fengqi. 2016

[2]Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. Liang, Chunbo,Huang, Xutang,Liang, Chunbo,Wang, Wenjun,Wang, Jing,Ma, Jun,Li, Cen,Zhou, Fei,Zhang, Shuquan,Yu, Ying,Zhang, Liguo,Huang, Xutang,Li, Weizhong. 2017

[3]Isolation and Characterization of Indole Acetic Acid Producing Root Endophytic Bacteria and Their Potential for Promoting Crop Growth. Yu, J.,Yu, J.,Yu, Z. H.,Wang, G. H.,Liu, X. B.,Fan, G. Q.. 2016

[4]Overexpression of a ItICE1 gene from Isatis tinctoria enhances cold tolerance in rice. Xiang, Dianjun,Man, Lili,Yin, Kuide,Song, Qunyan,Wang, Lina,Zhao, Minghui,Xu, Zhengjin,Zhao, Minghui,Xu, Zhengjin.

[5]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[6]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[7]Cloning Na+/H+ Antiporter Gene (nhaA) and Analysis of Function in Soybean. Wang Quanwei,Chen Liang,Zhang Hailing. 2011

[8]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[9]Analysis of the APX Gene Expressed in Soybean Infected by Heterodera glycines and Coated with Biocontrol Bacteria Sneb545. Xiang, Peng,Li, Hongpeng,Lu, Wencheng,Li, Baohua,Xiang, Peng,Zhu, Feng,Chen, Jingsheng,Li, Hongpeng,Chen, Lijie,Duan, Yuxi,Chen, Jingsheng. 2016

[10]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[11]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

[12]The relation between C-4 pathway enzymes and PSII photochemical function in soybean. Li, WH,Lu, QT,Hao, NB,Ge, QY,Zhang, QD,Jiang, GM,Du, WG,Kuang, TY. 2000

[13]Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Zhang, Wen Bo,Xin, Da Wei,Chen, Qing Shan,Zhang, Wen Bo,Jiang, Hong Wei,Liu, Chun Yan,Hu, Guo Hua,Zhang, Wen Bo,Qiu, Peng Cheng,Li, Can Dong,Hu, Guo Hua.

[14]Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Wang, Yufeng,Li, Weiqun,Wang, Ying,Wei, Dan,Wang, Xiaojun,Chen, Xueli.

[15]Introduction of exogenous wild soybean DNA into cultivated soybean and RAPD molecular verification. XIE, WW,WANG, B,LEI, BJ,LI, XC,LU, CB,QIAN, H,ZHOU, SJ.

[16]Colonization of Clonostachys rosea on soybean root grown in media inoculated with Fusarium graminearum. Pan, F.,Xu, Y.,Xue, Allen G.,McLaughlin, Neil B.,Li, S.,Zhao, D.,Qu, H..

[17]Eplt4 Proteinaceous Elicitor Produced in Pichia pastoris Has a Protective Effect Against Cercosporidium sofinum Infections of Soybean Leaves. Wang, Yun,Song, Jinzhu,Wu, Yingjie,Odeph, Margaret,Liu, Zhihua,Yang, Ping,Yao, Lin,Zhao, Lei,Yang, Qian,Howlett, Barbara J.,Wang, Shuang.

[18]Progress in the Breeding of Soybean for High Photosynthetic Efficiency. Hao, NB,Du, WG,Ge, QY,Zhang, GR,Li, WH,Man, WQ,Peng, DC,Bai, KZ,Kuang, TY.

[19]Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Yang, Zhe,Xin, Dawei,Sun, Yanan,Qi, Zhaoming,Chen, Qingshan,Yang, Zhe,Jiang, Hongwei,Han, Xue,Yang, Zhe,Liu, Chunyan,Hu, Guohua.

[20]Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Wang, Jinli,Li, Xiaoliang,Zhang, Junling,Yao, Ting,Wang, Jingguo,Wei, Dan,Wang, Yufeng.

作者其他论文 更多>>