您好,欢迎访问浙江省农业科学院 机构知识库!

Degradation of three fungicides following application on strawberry and a risk assessment of their toxicity under greenhouse conditions

文献类型: 外文期刊

作者: Sun, Caixia 1 ; Cang, Tao 1 ; Wang, Zhiwei 1 ; Wang, Xinquan 1 ; Yu, Ruixian 1 ; Wang, Qiang 2 ; Zhao, Xueping;

作者机构: 1.Zhejiang Acad Agr Sci, State Key Lab Breeding Base Zhejiang Sustainable, MOA Key Lab Pesticide Residue Detect, Inst Qual & Standard Agroprod, Hangzhou, Zhejiang, Peoples R China

2.Zhejiang Acad Agr Sci, State Key Lab Breeding Base Zhejiang Sustainable, MOA Key Lab Pesticide Residue Detect, Inst Qual & Standa

关键词: Pyraclostrobin;Myclobutanil;Difenoconazole;Strawberry;Safety evaluation

期刊名称:ENVIRONMENTAL MONITORING AND ASSESSMENT ( 影响因子:2.513; 五年影响因子:2.871 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The health risk to humans of pesticide application on minor crops, such as strawberry, requires quantification. Here, the dissipation and residual levels of three fungicides (pyraclostrobin, myclobutanil, and difenoconazole) were studied for strawberry under greenhouse conditions using high-performance liquid chromatography (HPLC)-tandem mass spectrometry after Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. This method was validated using blank samples, with all mean recoveries of these three fungicides exceeding 80 %. The residues of all three fungicides dissipated following first-order kinetics. The half-lives of pyraclostrobin, myclobutanil, and difenoconazole were 1.69, 3.30, and 3.65 days following one time application and 1.73, 5.78, and 6.30 days following two times applications, respectively. Fungicide residue was determined by comparing the estimated daily intake of the three fungicides against the acceptable daily intake. The results indicate that the potential health risk of the three fungicides was not significant in strawberry when following good agricultural practices (GAP) under greenhouse conditions.

  • 相关文献

[1]Residue Analysis and Degradation Studies of Fenbuconazole and Myclobutanil in Strawberry by Chiral High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Zhang, Hu,Wang, Xinquan,Qian, Mingrong,Wang, Xiangyun,Xu, Hao,Xu, Mingfei,Wang, Qiang.

[2]Enantioselective degradation of Myclobutanil and Famoxadone in grape. Lin, Chunmian,Zhang, Lijun,Zhang, Hu,Wang, Qiang,Zhu, Jiahong,Wang, Jianmei,Qian, Mingrong. 2018

[3]Occurrence of four mycotoxins in cereal and oil products in Yangtze Delta region of China and their food safety risks. Li, Rui,Wang, Xu,Zhou, Yu,Zhou, Ting,Yang, Dongxu,Wang, Qi. 2014

[4]Determination of difenoconazole residue in tomato during home canning by UPLC-MS/MS. Dong, Fengshou,Xu, Jun,Liu, Xingang,Li, Jing,Li, Yuanbo,Chen, Xiu,Zheng, Yongquan,Zhang, Changpeng,Shan, Weili. 2012

[5]Comparison of Greenhouse and Field Degradation Behaviour of Isoprocarb, Hexaflumuron and Difenoconazole in Perilla frutescens. Sun, Caixia,Zhang, Hu,Tang, Tao,Qian, Mingrong,Yuan, Yuwei,Zhang, Zhiheng,Sun, Caixia,Zhang, Hu,Tang, Tao,Qian, Mingrong,Yuan, Yuwei,Zhang, Zhiheng,Sun, Caixia,Zhang, Hu,Tang, Tao,Qian, Mingrong,Yuan, Yuwei,Zhang, Zhiheng.

[6]RdreB1BI enhances drought tolerance by activating AQP-related genes in transgenic strawberry. Gu, Xianbin,Gao, Zhihong,Yan, Yichao,Qiao, Yushan,Gu, Xianbin,Chen, Yahua,Wang, Xiuyun,Gu, Xianbin. 2017

[7]Global analysis of lysine acetylation in strawberry leaves. Fang, Xianping,Chen, Wenyue,Ruan, Songlin,Ma, Huasheng,Zhao, Yun,Zhang, Hengmu,Yan, Chengqi,Jin, Liang,Cao, Lingling,Zhu, Jun,Cheng, Zhongyi. 2015

[8]Effect of Shading and Rain-Shelter on Plantlet Growth and Antioxidant Systems in Strawberry (Fragaria x ananassa). Miao, L. M.,Zhang, Y. C.,Yang, X. F.,Jiang, G. H.. 2014

[9]Genomic identification, phylogeny, and expression analysis of MLO genes involved in susceptibility to powdery mildew in Fragaria vesca. Miao, L. X.,Zhang, Y. C.,Yang, X. F.,Zhang, H. Q.,Zhang, Z. F.,Wang, Y. Z.,Jiang, G. H.,Jiang, M.. 2016

[10]Dissipation of four fungicides on greenhouse strawberries and an assessment of their risks. Wang, Zhiwei,Cang, Tao,Qi, Peipei,Zhao, Xuepin,Xu, Hao,Wang, Xiangyun,Zhang, Hu,Wang, Xinquan.

[11]Technology of Anthracnose Control on Increasing Strawberry Plantlets. Jiang, G. H.,Miao, L. M.,Yang, X. F.,Zhang, Y. C.,Ren, H. Y.,Wang, H. R..

[12]Analysis of Tebuconazole and Tetraconazole Enantiomers by Chiral HPLC-MS/MS and Application to Measure Enantioselective Degradation in Strawberries. Zhang, Hu,Wang, Minghua,Zhang, Hu,Qian, Mingrong,Wang, Xinquan,Wang, Xiangyun,Xu, Hao,Qi, Peipei,Wang, Qiang.

[13]Strawberry Breeding in Zhejiang of China. Jiang, G. H.,Zhang, Y. C.,Miao, L. X.,Yang, X. F..

[14]Studies on Stereoscopic Cultivation in Strawberry. Zhang, Y. C.,Miao, L. X.,Yang, X. F.,Jiang, G. H..

[15]Effect of rain shelter and shading on plantlets growth and antioxidant contents in strawberry. Miao, Lixiang,Zhang, Yuchao,Yang, Xiaofang,Jiang, Guihua.

[16]Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria x ananassa) fruit. Miao, Lixiang,Zhang, Yuchao,Yang, Xiaofang,Xiao, Jinping,Zhang, Huiqin,Zhang, Zuofa,Wang, Yuezhi,Jiang, Guihua.

作者其他论文 更多>>