您好,欢迎访问黑龙江省农业科学院 机构知识库!

ABSENCE OF GEOGRAPHIC POPULATION STRUCTURE IN THE SOYBEAN POD BORER LEGUMINIVORA GLYCINIVORELLA (TORTRICIDAE)

文献类型: 外文期刊

作者: Wang, Hong 1 ; Han, Lanlan 1 ; Xu, Zhongxin 1 ; Ye, Lefu 1 ; Wang, Ling 1 ; Zhao, Kuijun 1 ; Wang, Keqin 2 ;

作者机构: 1.Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China

2.Heilongjiang Acad Agr Sci, Inst Plant Protect, Harbin 150086, Peoples R China

关键词: Leguminivora glycinivorella;CO II;Cytb;genetic diversity;gene flow

期刊名称:JOURNAL OF THE LEPIDOPTERISTS SOCIETY ( 影响因子:0.519; 五年影响因子:0.513 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In order to investigate geographic population structure and genetic diversity in the soybean pod borer Leguminivora glycinivorella, partial sequences of the mitochondrial DNA of 337 individuals from northeastern China were sequenced and analyzed. 16 haplotypes were found in CO II, and 14 haplotypes were defined in Cytb, including one haplotype shared by ten populations in each gene. L. glycinivorella populations are characterized by medium/low haplotype diversity and nucleotide diversity. The Tajima's D and Fu's Fs test indicated that there might not have been a recent population expansion. All pairwise gene flow Nm parameters were greater than one in the 10 populations. Molecular variance analysis (AMOVA) demonstrated that the observed genetic differentiation occurs primarily within populations, rather than among populations, no large-scale regional differences are detected. Genetic distance is not significantly correlated with geographical distance between populations. Maximum likelihood phylogenetic trees and a haplotype network showed that the haplotypes are distributed in different clades and no obvious geographical structure has been formed. The result suggested that geographic population structure among L. glycinivorella are not affected by geographic isolation and recent dispersal (some gene flow) resulting in no significant genetic differentiation occurred among populations.

  • 相关文献

[1]Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing. Wu, Jianzhong,Jiang, Tingbo,Wu, Jianzhong,Zhao, Qian,Wu, Guangwen,Zhang, Shuquan. 2017

[2]Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. Liu Dan,Wang Jia-yu,Wang Xiao-xue,Yang Xian-li,Sun Jian,Chen Wen-fu,Liu Dan. 2015

[3]Genetic diversity in parent lines of sweet sorghum based on agronomical traits and SSR markers. Wang, Liming,Yan, Xiufeng,Wang, Liming,Jiao, Shaojie,Jiang, Yanxi,Yan, Hongdong,Su, Defeng,Sun, Guangquan,Sun, Lianfa. 2013

[4]Analysis of the genetic diversity of Chinese native Cannabis sativa cultivars by using ISSR and chromosome markers. Zhang, L. G.,Chang, Y.,Zhang, L. G.,Guan, F. Z.,Yuan, H. M.,Yu, Y.,Zhang, X. F.,Zhao, L. J.. 2014

[5]Genetic diversity in Vicia amoena (Fabaceae) germplasm resource in China using SRAP and ISSR markers. Liu, Ying,Zhang, Ju-ming,Liu, Ying,Wang, Xian-guo,Liu, Fang,Shen, Zhong-bao. 2013

[6]Retrotransposon-based sequence-specific amplification polymorphism markers reveal that cultivated Pyrus ussuriensis originated from an interspecific hybridization. Yu, Peiyuan,Bai, Songling,Teng, Yuanwen,Jiang, Shuang,Wang, Xiaoxiang.

[7]Genetic diversity of Cucurbita maxima assessed using morphological characteristics and random-amplified polymorphic DNA markers in China. Zhao, Dan,Wen, Ling,Liu, Jianhui,Zhang, Junmin,Shi, Qingxin,You, Haibo,Liu, Qi,Bi, Hongwen,Zhu, Zicheng,Dong, Dejian.

作者其他论文 更多>>