您好,欢迎访问江苏省农业科学院 机构知识库!

Involvement of FgMad2 and FgBub1 in regulating fungal development and carbendazim resistance in Fusarium graminearum

文献类型: 外文期刊

作者: Zhang, L. G. 1 ; Zhang, Y. 1 ; Li, B. C. 1 ; Jia, X. J. 1 ; Chen, C. J. 1 ; Zhou, M. G. 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Plant Protect, Nanjing 210095, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Agroprod Proc, Nanjing 210014, Jiangsu, Peoples R China

关键词: Bub1;carbendazim resistance;Fusarium graminearum;Mad2;spindle assembly checkpoint

期刊名称:PLANT PATHOLOGY ( 影响因子:2.59; 五年影响因子:2.924 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Resistance to carbendazim of Fusarium graminearum is conferred by point mutation in the beta(2)-tubulin gene that plays an important role in spindle assembly. The spindle assembly checkpoint is a cellular surveillance system that is critical for maintaining genomic stability. Predicted protein Mad2- and Bub1-encoding genes in F. graminearum (FgMad2 and FgBub1) were isolated and characterized. There was no difference in FgMad2 and FgBub1 expression levels between carbendazim-sensitive and -resistant strains; however, after carbendazim treatment FgMad2 expression increased while FgBub1 expression stayed the same. Both the FgMad2 and FgBub1 deletion mutants became more sensitive to carbendazim. The FgMad2 deletion mutants grew more slowly, produced fewer conidia and both hyphae and conidia were malformed. Conversely, deletion of FgBub1 had no effect on fungal development other than a reduction in conidia production. FgMad2 deletion mutants exhibited a severe decrease in perithecia production and pathogenicity along with a down-regulation of trichothecene production, whereas FgBub1 deletion mutants exhibited only a slight reduction in perithecia production and was accompanied by a twofold increase in trichothecene production. Overall, the results indicate that both FgMad2 and FgBub1 are involved in carbendazim resistance and trichothecene biosynthesis, and FgMad2 plays an important role in fungal development in F. graminearum.

  • 相关文献

[1]Molecular characterization of the Fusarium graminearum species complex in Eastern China. Qiu, Jianbo,Xu, Jianhong,Shi, Jianrong,Qiu, Jianbo,Xu, Jianhong,Shi, Jianrong,Qiu, Jianbo,Xu, Jianhong,Shi, Jianrong.

[2]Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China. Qiu, Jianbo,Shi, Jianrong. 2014

[3]Involvement of threonine deaminase FgIlv1 in isoleucine biosynthesis and full virulence in Fusarium graminearum. Liu, Xin,Xu, Jianhong,Wang, Jian,Ji, Fang,Yin, Xianchao,Shi, Jianrong.

[4]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[5]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[6]Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. Zhang, Leigang,Li, Baicun,Zhang, Yu,Jia, Xiaojing,Zhou, Mingguo,Zhang, Leigang,Li, Baicun,Zhang, Yu,Jia, Xiaojing,Zhou, Mingguo,Zhang, Leigang.

[7]The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis. Gao, Tao,Chen, Jian,Shi, Zhiqi,Gao, Tao,Chen, Jian,Shi, Zhiqi,Gao, Tao,Chen, Jian,Shi, Zhiqi,Zhou, Hao,Zhou, Wei,Hu, Liangbin.

[8]Simultaneous determination of deoxynivalenol, and 15-and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. Yang, D.,Geng, Z. M.,Yao, J. B.,Zhang, X.,Zhang, P. P.,Ma, H. X.. 2013

[9]Enzyme-Linked Immunosorbent-Assay for Deoxynivalenol (DON). Ji, Fang,Li, Hua,Xu, Jianhong,Shi, Jianrong. 2011

[10]Change of Defensive-related Enzyme in Wheat Crown Rot Seedlings Infected by Fusarium graminearum. Zhang, P.,Zhou, M. P.,Zhang, X.,Huo, Y.,Ma, H. X.. 2013

[11]Fusarium graminearum growth inhibition due to glucose starvation caused by osthol. Shi, Zhiqi,Shen, Shouguo,Zhou, Wei,Wang, Fei,Fan, Yongjian. 2008

作者其他论文 更多>>