您好,欢迎访问江苏省农业科学院 机构知识库!

The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

文献类型: 外文期刊

作者: Zhu, Xiuliang 1 ; Yang, Kun 1 ; Wei, Xuening 1 ; Zhang, Qiaofeng; Rong, Wei 1 ; Du, Lipu 1 ; Ye, Xingguo 2 ; Qi, Lin;

作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci,Minist Agr, Key Lab Biol & Genet Improvement Triticeae Crops, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China

2.Chinese Acad Agr Sci, Inst Crop Sci,Minist Agr, Key Lab Biol & Genet Improvement Triticeae Crops, Natl Key Facil C

关键词: AGC kinase;differential expression;reactive oxygen species;resistance;Rhizoctonia cerealis;Triticum aestivum;wheat

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes.

  • 相关文献

[1]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[2]The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot In wheat. Hamada, Mohamed Sobhy,Yin, Yanni,Ma, Zhonghua,Chen, Huaigu.

[3]Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 x Xuzhou 25. Jiang, Yanjie,Zhu, Fangfang,Cai, Shibin,Wu, Jizhong,Zhang, Qiaofeng. 2016

[4]Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Li, Zhao,Xu, Huijun,Du, Lipu,Zhang, Zengyan,Zhou, Miaoping.

[5]Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. Nie, H,He, ZT,Chen, XL,Han, YP,Wang, JR,Li, X,Han, CG,Yu, JL. 2005

[6]Characterization of Rhizoctonia cerealis sensitivity to thifluzamide in China. Sun, Haiyan,Wang, Chengfeng,Li, Wei,Zhang, Aixiang,Deng, Yuanyu,Chen, Huaigu.

[7]Homozygous and heterozygous point mutations in succinate dehydrogenase subunits b, c and d of Rhizoctonia cerealis conferring resistance to thifluzamide. Sun, Hai-Yan,Lu, Chao-Qun,Li, Wei,Deng, Yuan-Yu,Chen, Huai-Gu.

[8]Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. Guo, Yingpeng,Li, Wei,Sun, Haiyan,Wang, Ning,Chen, Huaigu,Guo, Yingpeng,Yu, Hanshou. 2012

[9]Thymol Mitigates Cadmium Stress by Regulating Glutathione Levels and Reactive Oxygen Species Homeostasis in Tobacco Seedlings. Ye, Xiefeng,Ling, Tianxiao,Xue, Yanfeng,Xu, Cunfa,Zhou, Wei,Hu, Liangbin,Chen, Jian,Shi, Zhiqi,Chen, Jian,Shi, Zhiqi.

[10]Comparative analysis of ultrastructure, antioxidant enzyme activities, and photosynthetic performance in rice mutant 812HS prone to photooxidation. Ma, J.,Lv, C. F.,Zhang, B. B.,Wang, F.,Shen, W. J.,Chen, G. X.,Gao, Z. P.,Lv, C. G..

[11]Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Chen, Jian,Wang, Fan,Shi, Zhiqi,Chen, Jian,Wang, Fan,Shi, Zhiqi,Chen, Jian,Wang, Fan,Shi, Zhiqi,Han, Fengxiang X.,Zhang, Haiqiang.

[12]Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Ye, Xie-Feng,Ling, Tianxiao,Yu, Xiao-Na,Xue, Yanfeng,Wang, Yong,Cheng, Changxin,Feng, Guosheng,Hu, Liangbin,Shi, Zhiqi,Chen, Jian,Shi, Zhiqi,Chen, Jian.

[13]Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Huan, Chen,Han, Shuai,Jiang, Li,An, Xiujuan,Xu, Yin,Yu, Zhifang,Yu, Mingliang,Ma, Ruijuan.

[14]Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-kappa B activation. He, Jing,Wang, Xinfeng,Wang, Gongcheng,Li, Pengxia,Wang, Yuning,Si, Chuan-Ling,He, Jing,Bai, Yujia,Feng, Zuoshan,Long, Wei,Long, Wei.

[15]Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. Zhou, Jia-Yu,Zhao, Dan,Deng-Wang, Meng-Yao,Dai, Chuan-Chao,Li, Xia.

[16]Exogenous Nitric Oxide Pretreatment Enhances Chilling Tolerance of Anthurium. Liang, Lijian,Deng, Yanming,Sun, Xiaobo,Jia, Xinping,Su, Jiale. 2018

[17]Overexpression of Iris. lactea var. chinensis metallothionein IIMT2a enhances cadmium tolerance in Arabidopsis thaliana. Gu, Chun-Sun,Zhao, Yan-Hai,Huang, Su-Zhen,Gu, Chun-Sun,Zhao, Yan-Hai,Huang, Su-Zhen,Liu, Liang-qin,Zhu, Xu-dong,Deng, Yan-ming. 2014

[18]Chemical composition, antioxidant and cytoprotective activities of lotus receptacle. Shen, Ting,Wang, Xinfeng,Wu, Lei,Ji, Lilian,Hu, Weicheng,Shen, Ting,Wang, Xinfeng,Wu, Lei,Ji, Lilian,Wang, Gongcheng,Wang, Yuning,Li, Pengxia,Hu, Boran. 2015

[19]Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Liu, Xin,Yang, Lihua,Zhou, Xianyao,Lu, Yan,Zhang, Zengyan,Yang, Lihua,Ma, Lingjian,Zhou, Miaoping,Ma, Hongxiang.

[20]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

作者其他论文 更多>>