您好,欢迎访问中国水产科学研究院 机构知识库!

Vegetation alters the effects of salinity on greenhouse gas emissions and carbon sequestration in a newly created wetland

文献类型: 外文期刊

作者: Sheng, Qiang 1 ; Wang, Lei 3 ; Wu, Jihua 1 ;

作者机构: 1.Fudan Univ, Sch Life Sci, Coastal Ecosyst Res Stn Yangtze River Estuary, Minist Educ Key Lab Biodivers Sci & Ecol Engn, Shanghai 200438, Peoples R China

2.Chinese Acad Fishery Sci, Yangtze River Fisheries Res Inst, Wuhan 430223, Peoples R China

3.Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China

关键词: Wetland restoration;Wetland management;Greenhouse gases;Carbon sequestration;Salinity

期刊名称:ECOLOGICAL ENGINEERING ( 影响因子:4.035; 五年影响因子:4.611 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Wetland creation or restoration in degraded areas has become a new type of disturbance worldwide. Coastal wetlands serve a vital role in global carbon cycles; thus, it is important to understand the impacts of wetland creation on carbon storage functions. Carbon emissions and accumulation in wetlands are reported to be highly site-specific depending on factors such as salinity, plant type and productivity, and water table. This study investigated the effects of different salinities (<2 parts per thousand, similar to 5%. and >10 parts per thousand) on greenhouse gas emissions and carbon sequestration of created wetlands in the Yangtze River estuary. CH4 emissions significantly declined with increasing salinity, likely because of the higher sediment sulfate content at higher salinities. CO2 emissions were highest at intermediate salinities (similar to 5 parts per thousand). In unvegetated sites, the absolute CO2 emission equivalent was 0.178 kg m(-2) y(-1) in the <2 parts per thousand salinity treatment, which was 8.09 times higher than the >10 parts per thousand salinity treatment. In vegetated sites, the <2 parts per thousand salinity treatment had the highest annual net flux of carbon. Thus, despite the high carbon emission of low salinity wetland, enhanced plant productivity resulted in a high carbon absorption rate. Overall, these results demonstrate that the presence of vegetation altered the effects of salinity on carbon equivalency in created wetlands. This study suggests that to conserve the wetland carbon sink function, landscape design for wetland restoration in estuarine regions should consider creating open water wetland in high salinity regions and restoring vegetation in low salinity regions to facilitate the growth of macrophytes such as Phragmites australis. (C) 2015 Elsevier B.V. All rights reserved.

  • 相关文献

[1]The effect of temperature and salinity on survival and growth of Crangon uritai (Decapoda : Crangonidae) larvae reared in the laboratory. Li, Hui Yu,Hong, Sung Yun. 2007

[2]Na+/K+-ATPase alpha-subunit in swimming crab Portunus trituberculatus: molecular cloning, characterization, and expression under low salinity stress. Han, Xiaolin,Liu, Ping,Gao, Baoquan,Wang, Haofeng,Duan, Yafei,Xu, Wenfei,Chen, Ping,Han, Xiaolin. 2015

[3]The response of digestive enzyme activity in the mature Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura), to gradual increase of salinity. Wang, Ruifang,Zhuang, Ping,Feng, Guangpeng,Zhang, Longzhen,Huang, Xiaorong,Zhao, Feng,Wang, Yu,Wang, Ruifang,Zhuang, Ping. 2013

[4]Effects of temperature and salinity on the development of the amphipod crustacean Eogammarus sinensis. Xue Suyan,Xue Suyan,Fang Jianguang,Zhang Jihong,Jiang Zengjie,Mao Yuze,Zhao Fazhen,Xue Suyan,Fang Jianguang,Zhang Jihong,Jiang Zengjie,Mao Yuze,Zhao Fazhen. 2013

[5]Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water using the microalga Scenedesmus obliquus. Yao Zongli,Ying Chengqi,Lu Jianxue,Lai Qifang,Zhou Kai,Wang Hui,Yao Zongli,Chen Ling. 2013

[6]Analysis on the indicator species and ecological groups of pelagic ostracods in the East China Sea. Zhaoli, Xu. 2008

[7]Microbial Activities' Influence on Three Kinds of Metal Material Corrosion Behaviors. Li, Xia,Chen, Haiyan,Li, Huanyuan,Chen, Pimao,Qing, Chuangxing. 2017

[8]Ammonia and salinity tolerance of Penaeus monodon across eight breeding families. Chen, Jinsong,Zhou, Falin,Huang, Jianhua,Ma, Zhenhua,Jiang, Shigui,Qiu, Lihua,Chen, Jinsong,Qin, Jian G.. 2016

[9]Enrofloxacin pharmacokinetics in Takifugu flavidus after oral administration at three salinity levels. Ma, Rongrong,Yang, Liu,Ren, Tao,Dong, Yaping,Liu, Tengfei,Yang, Xianle,Hu, Kun,Ma, Rongrong,Zhuang, Ping,Fang, Wenhong,Liu, Tengfei.

[10]The interaction of temperature, salinity and body weight on growth rate and feed conversion rate in turbot (Scophthalmus maximus). Huang Zhi-Hui,Ma Ai-Jun,Wang Xin-An,Lei Ji-Lin,Huang Zhi-Hui.

[11]Associations of large jellyfish distributions with temperature and salinity in the Yellow Sea and East China Sea. Zhang, Fang,Sun, Song,Li, Chaolun,Jin, Xianshi.

[12]Effects of salinity on ingestion, oxygen consumption and ammonium excretion rates of the sea cucumber Holothuria leucospilota. Yu, Zonghe,Hu, Chaoqun,Liu, Wenguang,Yu, Zonghe,Hu, Chaoqun,Liu, Wenguang,Qi, Zhanhui,Huang, Honghui.

[13]Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. Liu, Feng,Luo, Min Bo.

[14]Salinity regulates antioxidant enzyme and Na+K+-ATPase activities of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758). Ma, Zhenhua,Zheng, Panlong,Guo, Huayang,Jiang, Shigui,Zhang, Dianchang,Ma, Zhenhua,Ma, Zhenhua,Liu, Xilei,Ma, Zhenhua,Qin, Jian G..

[15]Estimating optimal salinity and temperature of chaetognaths. Zhang, Dong,Xu, Zhao-Li,Zhang, Dong.

[16]Large-scale mortality and limited expression of heat shock proteins of aestivating sea cucumbers Apostichopus japonicus after acute salinity decrease. Meng, Xian-Liang,Dong, Yun-Wei,Meng, Xian-Liang,Dong, Shuang-Lin.

[17]Effects of cryoprotectants and salinity on viability and fatty acid profile of two haptophytes during preservation at low temperature (-22 +/- 1 degrees C). Zhu, Bao H.,Pan, Ke H.,Lin, Li M.,Ye, Nai H.. 2009

[18]The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931). Zhang, Peidong,Zhang, Xiumei,Li, Jian,Huang, Guoqiang. 2006

[19]Protein-sparing effect of carbohydrate in diets for juvenile turbot Scophthalmus maximus reared at different salinities. Zeng Lin,Lei Jilin,Ai Chunxiang,Hong Wanshu,Zeng Lin,Lei Jilin,Liu Bin,Zeng Lin,Lei Jilin,Liu Bin. 2015

[20]The interaction of salinity and Na/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Zhu, CB,Dong, SL,Wang, F. 2006

作者其他论文 更多>>