您好,欢迎访问河南省农业科学院 机构知识库!

Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain

文献类型: 外文期刊

作者: Zhang, Xubo 1 ; Xu, Minggang 1 ; Sun, Nan 1 ; Xiong, Wei 3 ; Huang, Shaomin 4 ; Wu, Lianhai 2 ;

作者机构: 1.Chinese Acad Agr Sci, Natl Engn Lab Improving Qual Arable Land, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China

2.Rothamsted Res, Sustainable Soils & Grassland Syst Dept, North Wyke EX20 2SB, Okehampton, England

3.Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China

4.Henan Acad Agr Sci, Inst Plant Nutr Resources & Environments, Zhengzhou 450002, Henan, Peoples R China

关键词: Climate change;SPACSYS;Wheat;Maize;Yield;Soil organic matter

期刊名称:GEODERMA ( 影响因子:6.114; 五年影响因子:6.183 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Changes in field management and climate will alter soil organic carbon (SOC) and nitrogen (SN) cycling in the coming decades. This study is to quantify the effects of various fertilisation strategies and climate change scenarios on crop yield, and soil C and N cycling by the end of this century. Data from a long-term experiment with a winter wheat (Triticum aestivium L.) and summer maize (Zea mays L.) rotation in Northern China was used to calibrate and validate the SPACSYS model. Five fertiliser practices were used: control (CK); combined mineral nitrogen, phosphorus and potassium (NPK); NPK plus manure (NPKM); high application rate of NPK fertilisers plus manure (hNPKM) and NPK with straw incorporation (NPKS). Crop yields, and SOC and SN stocks by 2100 were predicted under four climate scenarios (Baseline, RCP2.6, RCP4.5 and RCP4.5). Results showed that the SPACSYS model can adequately simulate the dynamics of SOC and SN stocks and the yields of winter wheat and summer maize. An application of NPK plus manure or straw not only enhanced crop yield, but also substantially increased SOC and SN stocks. The predictions showed the positive effects of fertilisation and climate change on crop yields and SOC stocks compared with those under the baseline. However, SN stock under the RCP8.5 decreased by 3-14% by 2100 for various fertilisation strategies compared with that under the baseline. On the other hand, mineral fertiliser plus manure led to a higher soil respiration rate and nitrogen losses through leaching and surface runoff under all the climate scenarios. Therefore, application of mineral fertilisers plus manure could enhance crop productivity and sustain soil fertility but cause more carbon emitted to the atmosphere and nitrogen losses. More attention should be paid on optimising fertilisation in order to increase crop productivity while minimising environmental risks. (C) 2015 Elsevier B.V. All rights reserved.

  • 相关文献

[1]基因枪介导法获得转BtCrylAc基因抗虫玉米植株的研究. 铁双贵,柏松,岳润清,齐建双,王延召,孙静,陈小洁,田保明. 2012

[2]Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain. Wang, Yingchun,Wang, Enli,Smith, Chris J.,Wang, Yingchun,Huang, Shaomin,Wang, Daolong,Ma, Yibing,Wang, Ligang.

[3]Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation. Wang, J.,Lu, C.,Xu, M.,Zhang, W.,Zhu, P.,Peng, C.,Huang, S.,Chen, X.,Wu, L.. 2013

[4]On-farm estimation of indigenous nitrogen supply for site-specific nitrogen management in the North China plain. Cui, Zhenling,Zhang, Fusuo,Chen, Xinping,Miao, Yuxin,Li, Junliang,Shi, Liwei,Xu, Jiufei,Ye, Youliang,Liu, Chunsheng,Yang, Zhiping,Zhang, Qiang,Huang, Shaomin,Bao, Dejun. 2008

[5]Dynamics of soil carbon to nitrogen ratio changes under long-term fertilizer addition in wheat-corn double cropping systems of China. Wang, X. J.,Cong, R. H.,Xu, M. G.,Zhang, W. J.,Xie, L. J.,Wang, B. R.,Cong, R. H.,Wang, X. J.,Huang, S. M..

[6]Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Zhang, Xinyou,Zhu, Shuijin,Zhang, Xinyou,Han, Suoyi,Tang, Fengshou,Xu, Jing,Liu, Hua,Yan, Mei,Dong, Wenzhao,Huang, Bingyan. 2011

[7]Evaluation of productivity and stability of elite summer soybean cultivars in multi-environment trials. Qin, Jun,Yang, Chunyan,Zhang, Mengchen,Xu, Ran,Zhang, Lifeng,Li, Haichao,Lu, Weiguo,Liu, Duan,Liu, Zhangxiong,Qiu, Lijuan,Frett, Terrence,Chen, Pengyin.

[8]EFFECTS OF SEED GRADING ON GROWTH AND YIELD OF SUMMER MAIZE UNDER NO-TILLING PRECISION SOWING CONDITIONS. Zhao, Xia,Li, Chaohai,Zhao, Xia,Zhang, Fengqi,Wu, Fenglan,Xue, Huazheng,Tang, Baojun,Zhao, Xia,Huang, Ruidong,Mei, Peipei,Zhang, Jiajia. 2016

[9]Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Huang, Cong,Nie, Xinhui,Shen, Chao,Zhao, Wenxia,Zhang, Xianlong,Lin, Zhongxu,Nie, Xinhui,You, Chunyuan,Li, Wu. 2017

[10]Value of groundwater used for producing extra grain in North China Plain. Zhao, Zhigan,Qin, Xin,Zhang, Yinghua,Wang, Zhimin,Zhao, Zhigan,Zang, Hecang,Chen, Chao.

[11]Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Feng, Shangguo,Yang, Yanjun,Xu, Mingfeng,Wang, Huizhong,Shen, Chenjia,Yue, Runqing,Zhang, Lei. 2015

[12]Predicting the chemical composition of intact kernels in maize hybrids by near infrared reflectance spectroscopy. Wei, LR,Jiang, HY,Li, JH,Yan, YL,Dai, JR. 2005

[13]Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Yue, Runqing,Lu, Caixia,Han, Xiaohua,Qi, Jianshuang,Yan, Shufeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Han, Xiaohua,Qi, Jianshuang,Yan, Shufeng,Tie, Shuanggui,Sun, Tao,Peng, Tingting. 2015

[14]Nitrate Leaching from Maize Intercropping Systems with N Fertilizer Over-Dose. Nie Sheng-wei,Chen Yuan-quan,Sui Peng,Huang Jian-xiong,Nie Sheng-wei,Huang Shao-min,Eneji, A. Egrinya. 2012

[15]Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Gu, Riliang,Chen, Fanjun,Long, Lizhi,Cai, Hongguang,Liu, Zhigang,Yang, Jiabo,Wang, Lifeng,Mi, Guohua,Zhang, Fusuo,Yuan, Lixing,Gu, Riliang,Li, Huiyong,Li, Junhui,Cai, Hongguang,Wang, Lifeng,Li, Huiyong. 2016

[16]Effects of excess copper on the oxidative stress in roots of maize seedlings. Wang, Yan Zhao,Nie, Li Hong,Tie, Shuanggui,Xie, Deyi,Zhu, Weihong,Qi, Jianshuang,Yue, Runqing. 2011

[17]Soil Nitrous Oxide Emissions Under Maize-Legume Intercropping System in the North China Plain. Huang Jian-xiong,Chen Yuan-quan,Sui Peng,Nie Sheng-wei,Gao Wang-sheng,Nie Sheng-wei. 2014

[18]Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui,Yue, Runqing,Lu, Caixia,Qi, Jianshuang,Han, Xiaohua,Yan, Shufeng,Guo, Shulei,Liu, Lu,Fu, Xiaolei,Chen, Nana,Yin, Haiyan,Chi, Haifeng,Tie, Shuanggui. 2016

[19]Transcriptomic analysis of maize mature embryos from an elite maize hybrid Zhengdan958 and its parental lines. Li, Huiyong,Cao, Yanyong,Wang, Lifeng,Zhang, Yan,Li, Jingjing,Wang, Hao,Tang, Baojun,Liu, Tingsong.

[20]Dissection of the genetic architecture for grain quality-related traits in three RIL populations of maize (Zea mays L.). Wang, Zhiyong,Liu, Na,Ku, Lixia,Tian, Zhiqiang,Shi, Yong,Guo, Shulei,Su, Huihui,Zhang, Liangkun,Ren, Zhenzhen,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Wang, Zhiyong,Liu, Na,Ku, Lixia,Tian, Zhiqiang,Shi, Yong,Guo, Shulei,Su, Huihui,Zhang, Liangkun,Ren, Zhenzhen,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Liu, Na,Qi, Jianshuang,Zhang, Xin.

作者其他论文 更多>>