您好,欢迎访问江苏省农业科学院 机构知识库!

Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater

文献类型: 外文期刊

作者: Sun, Haijun 1 ; Zhang, Hailin 3 ; Min, Ju 2 ; Feng, Yanfang 2 ; Shi, Weiming 2 ;

作者机构: 1.Nanjing Forestry Univ, Adv Anal & Testing Ctr, Nanjing 210037, Jiangsu, Peoples R China

2.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China

3.Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA

4.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Nanjing 210014, Jiangsu, Peoples R China

关键词: Biochar;Nitrogen fertilizer;Nitrogen use efficiency;Urea;Waste water

期刊名称:PADDY AND WATER ENVIRONMENT ( 影响因子:1.517; 五年影响因子:1.754 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: It is of great concern that nitrogen-rich (N-rich) wastewater irrigation increases ammonia (NH3) volatilization from rice (Oryza sativa L.) paddy fields. A pilot-scale field trial was conducted to study the impact of different management practices on reducing NH3 volatilization and their subsequent impacts on nitrous oxide (N2O) emission from a paddy field irrigated with N-rich wastewater generated by livestock production and supplemented with urea N fertilizer. A total of 225 kg N ha(-1) combined with urea and N-rich wastewater was split into basal, the first, and second supplementary applications for the following five treatments: urea N mixed with controlled-release N fertilizer (BBF), floating duckweed (FDW), biochar alone (BC), biochar mixed with calcium superphosphate (BCP), and control with no amendment (CK). Results showed that each treatment had similar pattern of NH3 volatilization and N2O emission after N application. Treatments of BBF, FDW, and BCP effectively reduced NH3 losses by 22.8, 55.2, and 39.2 %, respectively, compared with the CK. BBF treatment decreased NH3 volatilization after the first supplementary N fertilization; BCP treatment reduced NH3 volatilization after the basal fertilization; and FDW treatment reduced NH3 volatilization after both the basal and first supplementary fertilization. Besides controlling the NH3 volatilization, BCP treatment also reduced 19.5 % of N2O loss. However, BC alone suppressed N2O emission by 24.3 %, but did not reduce NH3 loss. The findings can practically guide farmers to choose the appropriate management practices in improving N use efficiency and minimizing the impact of fertilization on environmental quality.

  • 相关文献

[1]Irrigating-continuous cropping with Bacillus subtilis D9 fortified waste water could control the Fusarium wilt of Artemisia selengens. Shao Hong-Bo,Chen Li-Hua,Han Rui,Zhang Huan,Xu Xiang-Hong,Wang Ming-Yue,Cheng Yao,Shao Xiao-Hou,Chen Li-Hua,Xu Xiang-Hong.

[2]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[3]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[4]Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Chen FanJun,Yuan LiXing,Mi GuoHua,Zhang FuSuo,Fang ZenGuo,Gao Qiang,Ye YouLiang,Jia LiangLiang. 2013

[5]NURSERY-BOX TOTAL FERTILIZATION TECHNOLOGY ( NBTF) APPLICATION FOR INCREASING NITROGEN USE EFFICIENCY IN CHINESE IRRIGATED RICELAND: N-SOIL INTERACTIONS. Gao, Ji,Chen, Zhe,Yang, Shiqi,Yang, Zhengli,Zhang, Qingwen,Liu, Ruliang,Shao, Hongbo,Shao, Hongbo,Yoshikazu, Nagai.

[6]EFFECT OF NITROGEN MANAGEMENT ON PRODUCTIVITY, NITROGEN USE EFFICIENCY AND NITROGEN BALANCE FOR A WHEAT-MAIZE SYSTEM. Sha, Zhimin,Yao, Dongwei,Zhou, Wei,He, Ping,Xing, Suli. 2013

[7]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

[8]Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang.

[9]Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang, Ning,Chang, Zhi-Zhou,Xue, Xi-Mei,Juhasz, Albert L.,Li, Hong-Bo.

[10]Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Feng, Yanfang,Xue, Lihong,Gao, Qian,Yang, Linzhang,Feng, Yanfang,Sun, Haijun,Sun, Haijun,Liu, Yang,Lu, Kouping.

[11]Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Xu, Gang,Zhang, You,Sun, Junna,Shao, Hongbo,Shao, Hongbo,Sun, Junna,Zhang, You.

[12]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[13]Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Wang, Ting-Ting,Lu, Meng-Xiao,Liu, Xian-Jin,Yu, Xiang-Yang,Li, Yi-Song,Jiang, Alice C..

[14]The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu, Haiying,Liu, Junzhuo,Wu, Yonghong,Lu, Haiying,Shao, Hongbo,Kerr, Philip G..

[15]Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Yu, Xiang-Yang,Mu, Chang-Li,Liu, Xian-Jin,Gu, Cheng,Liu, Cun.

[16]Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and P-31 NMR analysis. Xu, Gang,Zhang, You,Shao, Hongbo,Sun, Junna,Shao, Hongbo,Sun, Junna,Zhang, You.

[17]Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Capareda, Sergio,Gao, Jun.

[18]Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sun, Haijun,Chu, Lei,Lu, Haiying,Shao, Hongbo,Shi, Weiming.

[19]Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria. He, Shiying,Duan, Jingjing,Feng, Yanfang,Yang, Bei,Yang, Linzhang,Zhong, Linghao. 2017

[20]Effects of biochar application on Suaeda salsa growth and saline soil properties. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang. 2016

作者其他论文 更多>>