Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants
文献类型: 外文期刊
作者: Pehlivan, Necla 1 ; Sun, Li 2 ; Jarrett, Philip 2 ; Yang, Xiaojie 3 ; Mishra, Neelam 2 ; Chen, Lin 4 ; Kadioglu, Asim; 1 ;
作者机构: 1.Recep Tayyip Erdogan Univ, Dept Biol, Rize, Turkey
2.Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA
3.Henan Acad Agr Sci, Zhengzhou, Peoples R China
4.Zhejiang Acad Agr Sci, Hangzhou, Zhejiang, Peoples R China
5.Karadeniz Tech Univ, Dept Biol, Trabzon, Turkey
关键词: Arabidopsis;Combined stresses;Genetic engineering;Heat stress;Salt stress;Sodium;proton antiporter
期刊名称:PLANT AND CELL PHYSIOLOGY ( 影响因子:4.927; 五年影响因子:5.516 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: The Arabidopsis gene AtNHX1 encodes a vacuolar membranebound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membranebound Na+/H+ antiporter that exports Na + to the extracellular space and imports H + into the plant cell. Plants rely on these enzymes either to keep Na + out of the cell or to sequester Na + into vacuoles to avoid the toxic level of Na + in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration > 200mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops.
- 相关文献
作者其他论文 更多>>
-
Genome Wide Identification, Expression Profiles and Regulatory Network Analysis of SOS Group of Genes in Camellia Sinensis
作者:Li, Wang;Lin, Chen;Shen, Guoxin;Bhattacharjee, Surjit;Mishra, Neelam
关键词:C. sinensis; SOS; Cis-acting elements; Expression pattern; Abiotic stress
-
Tea aroma retention strategies using tea polysaccharide conjugates: Insights from the yellowing process
作者:Xu, Anan;Tao, Meng;Tu, Zheng;Wang, Shanshan;Cao, Yanyan;Liu, Zhengquan;Chen, Lin
关键词:Tea aroma; Yellowing treatment; Tea polysaccharide conjugates; Interaction
-
Insights into the quality and safety control of traditional Chinese fermented sausages via dynamic profiling of the microbiota and metabolome
作者:Liu, Peiyun;Xu, Chunlan;Liu, Peiyun;Zhang, Hong;Li, Huanhuan;Tang, Honggang;Chen, Lihong;Zhao, Ke;Ma, Xiaozhong;Ge, Shengyuan
关键词:Traditional fermented sausage; Ripening time; Microbes; Metabolites; Food safety
-
Genome-wide identification of PP2A gene family in Camellia sinensis reveals the potential role of CsPP2A-TON2/FASS1 in abiotic stress
作者:Bhattacharjee, Surjit;Mishra, Neelam;Miao, Ye;Lu, Honglin;Shen, Guoxin
关键词:Protein phosphatases; Genome-wide search; qRT-PCR; Stress-responsiveness; C. sinensis.; Drought stress; Salt stress; PP2A gene family
-
Exploration and molecular mechanism of novel ACE inhibitory peptides from goat milk protein: A combined in silico and in vitro study
作者:Zhu, Ruikai;Wu, Yulong;Xu, Xianrong;Zhu, Ruikai;Zhang, Hong;Wu, Yulong;Li, Huanhuan;Tang, Honggang;Zhao, Ke;Zhang, Hong
关键词:Goat milk protein; ACE inhibitory peptide; Enzymatic hydrolysis; Virtual screening; Molecular docking
-
Genome-wide identification reveals a bZIP transcription factor modulating chlorophyll catabolism during leaf yellowing in harvested Chinese flowering cabbage
作者:Zeng, Ze-xiang;Rong, Yuan;Chen, Lin;Wei, Wei;Shan, Wei;Kuang, Jian-fei;Lu, Wang-jin;Chen, Jian-ye;Fan, Zhong-qi;Su, Xin-guo;Han, Yan-chao;Chen, Hang-jun
关键词:WGCNA; Leaf senescence; Transcriptional regulation; 6-BA
-
Facilitating Phloem-Mediated Iron Transport Can Improve the Adaptation of Rice Seedlings to Iron Deficiency Stress
作者:Lin, Yan;Liu, Bingjie;Li, Ganghua;Liu, Zhenghui;Ding, Yanfeng;Chen, Lin;Lin, Yan;Liu, Bingjie;Li, Ganghua;Liu, Zhenghui;Ding, Yanfeng;Chen, Lin;Li, Ganghua;Liu, Zhenghui;Ding, Yanfeng;Chen, Lin;Hu, Yuxiang
关键词:Rice (
Oryza Sativa L.); Iron Deficiency; Phloem; Iron transport; Plant hormone signal transduction



