您好,欢迎访问广东省农业科学院 机构知识库!

pH dependence of quinone-mediated extracellular electron transfer in a bioelectrochemical system

文献类型: 外文期刊

作者: Wu, Yundang 1 ; Li, Fangbai 2 ; Liu, Tongxu 2 ; Han, Rui 2 ; Luo, Xiaobo 2 ;

作者机构: 1.Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China

2.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510640, Guangdong, Peoples R China

3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China

关键词: pH;quinone;extracellular electron transfer;bioelectrochemical system

期刊名称:ELECTROCHIMICA ACTA ( 影响因子:6.901; 五年影响因子:6.016 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Quinone-mediated extracellular electron transfer (EET) is a well-known and important microbial respiration process in many natural and engineering systems. While it has been recognized that both the speciation of quinones and cell metabolism are pH-sensitive, the pH dependence of quinone-mediated EET is still unclear. In this study, pH effects in the range of 6.2 to 7.8 were investigated in a bioelectrochemical system using 9,10-anthraquinone-2-sulfonic acid (AQS) as a model quinone. The results showed that the current generation increased at pH 6.2-6.8 and then tended to stabilize, with a slight decrease at pH 7.0-7.8. The open circuit voltage (OCV) changed in a similar manner as a function of pH. The cell growth after current generation at different pH values was also indicated by the total DNA, which increased at pH 6.2-6.8 and then decreased at pH 7.0-7.8. Thermodynamic calculations and cyclic voltammetry measurements indicated that the redox potentials of AQS were negatively correlated with pH. At pH 6.2-7.0, both cell growth and the AQS redox properties had positive effects; at pH 7.0-7.8, while the AQS redox properties still had a positive impact on the EET capacity, the decline in the cell density slowed the increase of the EET capacity. These results provide a fundamental understanding of quinone-mediated EET processes and emphasize the importance of pH. (C) 2016 Elsevier Ltd. All rights reserved.

  • 相关文献

[1]Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer. Ma Jinlian,Ma Jinlian,Tang Jia,Zhou Shungui,Zhuang Li,Ma Chen. 2015

[2]Genome sequence of a dissimilatory Fe(III)-reducing bacterium Geobacter soli type strain GSS01(T). Yang, Guiqin,Yang, Guiqin,Chen, Shanshan,Zhou, Shungui,Yang, Guiqin,Liu, Yongfeng. 2015

[3]Axial Ligation of Heme in c-Type Cytochromes of Living Shewanella oneidensis: A New Insight into Enhanced Extracellular Electron Transfer. Yuan, Yong,Zhou, Shungui,Li, Laicai. 2015

[4]Effect of pH on pentachlorophenol degradation in irradiated iron/oxalate systems. Lan, Qing,Li, Fang-bai,Liu, Cheng-shuai,Lan, Qing,Liu, Hong,Zeng, Feng.

[5]Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Yu, Huan-Yun,Liu, Chuanping,Zhu, Jishu,Li, Fangbai,Wang, Qi,Liu, Chengshuai,Deng, Dong-Mei.

[6]环境因素对华南地区土壤中莠去津降解的影响. 苗辉,冯莉,姚强,黄继光,周利娟. 2016

[7]DEP和DBP在黑土胶体微界面的动力学行为. 徐伟慧,胡影,王志刚. 2018

[8]浅析我国精制有机肥质量标准存在问题及主要指标的制定. 严超,徐培智,解开治,陈建生. 2008

[9]不同pH条件下乳清蛋白-桑椹多酚复合营养粉的制备及其理化性质. 袁麒,王旭苹,杨怀谷,程镜蓉,林耀盛,邹金浩,唐道邦,刘学铭. 2023

[10]生物炭基质可显著地促进香蕉幼苗生长. 魏岚,黄连喜,李翔,王泽煌,陈伟盛,黄庆,黄玉芬,刘忠珍. 2022

[11]恶性杂草马齿苋(Portulaca oleracea)种子萌发特性的研究. 杨彩宏,冯莉,岳茂峰. 2009

[12]环境因子对土壤中二氯喹啉酸降解的影响. 苗辉,杨小娟,程丹丹,段程,冯莉,周利娟,徐汉虹. 2014

[13]氮肥种类及用量对赤红壤pH和可溶性盐的影响. 艾绍英,孙自航,姚建武,李盟军,王艳红,操君喜. 2008

[14]不同酸调节溶液pH对生菜漂浮幼苗根系形态及产量的影响(英文). 张白鸽,陈琼贤,王金祥,杨秋,曹健,赫新洲. 2011

[15]加剧酸化对土壤有效态Cd和水稻的影响. 韦思亦,唐拴虎,李玉义,熊国旋,张木,吴腾飞. 2023

[16]连续施用鸡粪与鸽粪土壤次生盐渍化风险研究. 姚丽贤,李国良,何兆桓,付长营. 2007

[17]不同保鲜处理对柠檬贮藏效果的研究. 刘清化,龙成树,陈永春,龚丽,刘军. 2016

[18]1984年以来广东水稻土pH变化趋势及影响因素. 曾招兵,曾思坚,刘一锋,汤建东,张满红. 2014

作者其他论文 更多>>