您好,欢迎访问广东省农业科学院 机构知识库!

Delivery of roxarsone via chicken diet -> chicken -> chicken manure -> soil -> rice plant

文献类型: 外文期刊

作者: Yao, Lixian 1 ; Huang, Lianxi 2 ; He, Zhaohuan 2 ; Zhou, Changmin 2 ; Lu, Weisheng 1 ; Bai, Cuihua 1 ;

作者机构: 1.South China Agr Univ, Coll Nat Resources & Environm, Guangzhou 510642, Guangdong, Peoples R China

2.Guangdong Acad Agr Sci, Inst Agr Resources & Environm, Guangzhou 510640, Guangdong, Peoples R China

关键词: Roxarsone;Animal manure;Rice;As species;Paddy soil

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Roxarsone (ROX), a widely used feed additive, occurs as itself and its metabolites in animal manure. Rice is prone to accumulate As than other staple food. Four diets with 0, 40, 80 and 120 mg ROX kg(-1) were fed in chickens, and four chicken manures (CMs) were collected to fertilize rice plants in a soil culture experiment. Linear regression analysis shows that the slopes of As species including 4-hydroxy-phenylarsonic acid, As(V), As(III), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in CM versus dietary ROX were 0.033, 0.314, 0.033, 0.054 and 0.138, respectively. Both As(III) and DMA were determined in all rice grains, and As(III), As(V), MMA and DMA in rice hull, but detectable As forms in rice straws and soils increased with increasing ROX dose. Grain As(III) was unrelated to ROX dose but exceeded the Chinese rice As limit (0.15 mg As(III) kg(-1)). Dietary ROX enhanced straw As(III) mostly, with the slope of 0.020, followed by hull DMA (0.006) and grain DMA (0.002). The slopes of soil As(V) and As(III) were 0.003 and 0.001. This is the first report illustrating the quantitative delivery of ROX via food chain, which helps to evaluate health and environmental risks caused by ROX use in animal production. (C) 2016 Elsevier B.V. All rights reserved.

  • 相关文献

[1]UPTAKE AND TRANSPORT OF ROXARSONE AND ITS METABOLITES IN WATER SPINACH AS AFFECTED BY PHOSPHATE SUPPLY. Yao, Lixian,Li, Guoliang,Yang, Baomei,He, Zhaohuan,Zhou, Changmin,Dang, Zhi.

[2]Roxarsone and its metabolites in chicken manure significantly enhance the uptake of As species by vegetables. He, Zhaohuan,Zhou, Changmin,Li, Guoliang,Yang, Baomei,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin,Li, Guoliang,Yang, Baomei,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin,Li, Guoliang,Yang, Baomei,Yao, Lixian,Deng, Xiancai.

[3]Phosphate enhances uptake of As species in garland chrysanthemum (C-coronarium) applied with chicken manure bearing roxarsone and its metabolites. Deng, Xiancai,Huang, Lianxi,He, Zhaohuan,Zhou, Changming,Li, Guoliang.

[4]Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites. Bai, Cuihua,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin.

[5]External inorganic N source enhances the uptake of As species in garland chrysanthemum (C. coronarium) amended with chicken manure bearing roxarsone and its metabolites. Huang, Lianxi,He, Zhaohuan,Zhou, Changmin,Li, Guoliang,Yang, Baomei,Deng, Xiancai. 2013

[6]Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure. Yao, Li Xian,He, Zhao Huan,Zhou, Chang Min,Li, Guo Liang,Yang, Bao Mei,Huang, Lian Xi,Yao, Li Xian,He, Zhao Huan,Zhou, Chang Min,Li, Guo Liang,Yang, Bao Mei,Li, Ying Fen. 2013

[7]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[8]Simultaneous Analysis of Roxarsone and Its Metabolites by Liquid Chromatography-Hydrodide Generation-Atomic Fluorescence Spectrometry. Huang Lian-Xi,He Zhao-Huan,Zeng Fang,Yao Li-Xian,Zhou Chuang-Min,Guo Bin. 2010

[9]Phytoavailability of roxarsone and its metabolites for turnip as affected by soil pH. Yao, L. X.,Li, G. L.,He, Z. H.,Zhou, C. M.,Yang, B. M.,Dang, Z..

[10]Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Yao, Lixian,Li, Guoliang,He, Zhaohuan,Zhou, Changmin,Yang, Baomei,Yao, Lixian,Dang, Zhi.

[11]Arsenic uptake by two vegetables grown in two soils amended with As-bearing animal manures. Yao, Li-Xian,Dang, Zhi,Yao, Li-Xian,Li, Guo-Liang,He, Zhao-Huan,Zhou, Chang-Min,Yang, Bao-Mei.

[12]Occurrence of Arsenic Impurities in Organoarsenics and Animal Feeds. .

[13]Effect of Cr(VI) on Fe(III) reduction in three paddy soils from the Hani terrace field at high altitude. Li, Xiao-min,Liu, Tong-xu,Li, Fang-bai,Zhang, Nai-ming,Ren, Guo,Li, Xiao-min,Li, Yong-tao. 2012

[14]Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Li, Xiaomin,Zhang, Wei,Liu, Tongxu,Chen, Linxing,Chen, Pengcheng,Li, Fangbai.

[15]The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Yu, Huan-Yun,Ding, Xiaodong,Li, Fangbai,Wang, Xiangqin,Zhang, Shirong,Liu, Chuanping,Xu, Xianghua,Wang, Qi,Ding, Xiaodong,Yi, Jicai.

[16]Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink?. Liu, Chuanping,Yu, Huan-Yun,Liu, Chengshuai,Lie, Fangbai,Xu, Xianghua,Wang, Qi.

[17]ESTABLISHMENT AND APPLICATION OF A SET OFBLAST IN RICE. Li Xiaofang,Luo Wenyong,Xiao Xin,Mao Xingxue,Liu Yanzhuo. 2001

[18]Disruption of Secondary Wall Cellulose Biosynthesis Alters Cadmium Translocation and Tolerance in Rice Plants. Song, Xue-Qin,Liu, Li-Feng,Zhang, Bao-Cai,Gao, Ya-Ping,Liu, Xiang-Ling,Zhou, Yi-Hua,Jiang, Yi-Jun,Lin, Qing-Shan,Ling, Hong-Qing. 2013

[19]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[20]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

作者其他论文 更多>>