Application of Long-Wave Near Infrared Hyperspectral Imaging for Measurement of Soluble Solid Content (SSC) in Pear
文献类型: 外文期刊
作者: Li, Jiangbo 1 ; Tian, Xi 1 ; Huang, Wenqian 1 ; Zhang, Baohua 1 ; Fan, Shuxiang 1 ;
作者机构: 1.Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
2.Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
3.Minist Agr, Key Lab Agri informat, Beijing 100097, Peoples R China
4.Beijing Key Lab Intelligent Equipment Technol Agr, Beijing 100097, Peoples R China
5.Beijing Key Lab Intelligent Equipment Technol Agr, Beijing
关键词: Hyperspectral imaging;Pear;Soluble solid content;Partial least square;Variable selection
期刊名称:FOOD ANALYTICAL METHODS ( 影响因子:3.366; 五年影响因子:3.07 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Soluble solid content (SSC) in fruit is one of the most crucial internal quality factors, which could provide valuable information for commercial decision-making. Near-infrared (NIR) technique has effective potentials for determining the SSC since NIR was sensitive to the concentrations of organic materials. In this study, a novel NIR technique, long-wave near infrared (LWNIR) hyperspectral imaging with a spectral range of 930-2548 nm, was investigated for measuring the SSC in pear, which has never been examined in the past. A new combination of Monte Carlo-uninformative variable elimination (MC-UVE) and successive projections algorithm (SPA) was proposed to select most effective variables from LWNIR hyperspectral data. The selected variables were used as the inputs of partial least square (PLS) to build calibration models for determining the SSC of 'Ya' pear. The results indicated that calibration model built using MC-UVE-SPA-PLS on 18 effective variables achieved the optimal performance for prediction of SSC comparing with other developed PLS models (MC-UVE-PLS and SPA-PLS) by comprehensively considering the accuracy, robustness, and complexity of models. The correlation coefficients between the predicted and actual SSC were 0.88 and 0.88 and the root mean square errors were 0.49 and 0.35 A degrees Brix for calibration and prediction set, respectively. The overall results indicated that long-wave near infrared hyperspectral imaging incorporated to MC-UVE-SPA-PLS model could be applied as an alternative, fast, accurate, and nondestructive method for the determination of SSC in pear.
- 相关文献
作者其他论文 更多>>
-
Determination of soluble solids content of multiple varieties of tomatoes by full transmission visible-near infrared spectroscopy
作者:Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Li, Jiangbo;Wang, Qingyan;Shi, Ruiyao;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:tomato; soluble solids content; online detection; full transmission; quantitative analysis model
-
Fast detection of the early decay in oranges using visible-LED structured- illumination imaging combined with spiral phase transform and feature-based classification model
作者:Cai, Zhonglei;Zhang, Junyi;Sun, Chanjun;Zhang, Yizhi;Shi, Ruiyao;Zhang, Junyi;Li, Jiangbo;Zhang, Yizhi;Zhang, Hailiang;Li, Jiangbo
关键词:oranges; early decay detection; structured-illumination imaging; spiral phase transform; classification model
-
Green analytical assay for the viability assessment of single maize seeds using double-threshold strategy for catalase activity and malondialdehyde content
作者:An, Ting;Fan, Yaoyao;Tian, Xi;Wang, Qingyan;Wang, Zheli;Fan, Shuxiang;Huang, Wenqian;An, Ting
关键词:Hyperspectral imaging; CAT activity; MDA content; Data fusion; Seed viability
-
Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods
作者:Cai, Zhonglei;Li, Jiangbo;Cai, Zhonglei;Sun, Chanjun;Li, Jiangbo;Cai, Zhonglei;Zhang, Hailiang;Zhang, Yizhi;Li, Jiangbo
关键词:Citrus; Early detection; Image processing; Universal classification model; Deep learning
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
Online detection of lycopene content in the two cultivars of tomatoes by multi-point full transmission Vis-NIR spectroscopy
作者:Li, Sheng;Wang, Qingyan;Shi, Ruiyao;Li, Jiangbo;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:Tomato quality; Nondestructive evaluation; Chemometrics; Least angle regression; Model optimization
-
Detection of Insect-Damaged Maize Seed Using Hyperspectral Imaging and Hybrid 1D-CNN-BiLSTM Model
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Shuxiang;An, Ting;Zhang, Chi;Chen, Liping;Huang, Wenqian
关键词:Maize seed; Insect infestation; Hyperspectral imaging; Deep learning; BiLSTM